

BUREAU OF MINES

U.S. Bureau of Mines Standard Research Center E to Montgomery Ave. Standard WA 99207

> Mission: As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural and cultural resources. This includes fostering wise use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also promotes the goals of the Take Pride in America campaign by encouraging stewardship and citizen responsibility for the public lands and promoting citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

Report of Investigations 9363

Mine Fire Diagnostics and Implementation of Water Injection With Fume Exhaustion at Renton, PA

By Louis E. Dalverny and Robert F. Chaiken

UNITED STATES DEPARTMENT OF THE INTERIOR Manuel Lujan, Jr., Secretary

BUREAU OF MINES T S Ary, Director

Library of Congress Cataloging in Publication Data:

Dalverny, Louis E.

1

į

1

Mine fire diagnostics and implementation of water injection with fume exhaustion at Renton, PA / by Louis E. Dalverny and Robert F. Chaiken.

p. cm. - (Report of investigations; 9363)

Includes bibliographical references (p. 27).

Supt. of Docs. no.: I 28.23:9363.

1. Abandoned coal mines—Pennsylvania—Allegheny County—Fires and fire prevention. 2. Spoil banks—Fires and fire prevention. I. Chaiken, Robert F. II. Title. III. Series: Report of investigations (United States. Bureau of Mines); 9363.

TN23.U43 [TN315] 622 s-dc20 [622',82] 90-2645 CIP

CONTENTS

T

₽

Abstract	1
Introduction	2
Acknowledgments	3
Site description and history	3
Preparations for diagnostic studies: baseline data	4
Diagnostic studies	10
Communications phase	10
Extinguishment effort	16
Physical plant	16
Analysis of extinguishment effort data	18
Temperatures and gas analyses	18
Water injection	24
Computer-assisted data analyses—discussion	25
Summary and conclusions	26
References	27
Appendix A.—Fan assembly description	28
Appendix BLOTUS 1-2-3 spreadsheet tabulations of results for two borehole communications test periods .	30
Appendix CVentilation network analysis for abandoned mines	39

ILLUSTRATIONS

1.	Geographical location of mine fire project site	4
2.	Aerial view of mine fire project site	5
3.	Terrain conductivity survey data for Miller Farm subsite	6
4.	Example of handwritten stratigraphic data from core boring near water tank	7
5.	Borehole casing cap fitted for water injection and for monitoring	8
6.	Fan assembly in operation during borehole communications study	9
7.	Communications test borehole vacuum values and distances from exhaust BH 21 with vacuum at	
	21.5 in H ₂ O	10
8.	Project site contour map with locations of numbered boreholes	11
9.	Schematic of mine fire diagnostics method	12
10.	Air-free carbon monoxide versus borehole temperature, baseline data, Danny property	13
11.	Jones-Trickett ratio versus borehole temperature, baseline data, Danny property	14
12.	Carbon monoxide-to-carbon dioxide concentration ratio versus borehole temperature, baseline data,	
	Danny property	14
13.	Hydrocarbon ratio versus borehole temperature, baseline data, Danny property	15
14.	Summary of fire signature information from eight borehole communications tests	15
15.	Map of hot and cold boreholes determined from fire signature values, 1984 test days, Danny property.	16
16.	Map of hot and cold boreholes determined from fire signature values, 1985 test days, Danny property .	16
17.	Injection water pressure gauge, pipe, and valve at top of borehole casing	18
18.	Temperature, O ₂ concentration, and hydrocarbon ratio R1 at bottom of BH 14 during project	19
19.	Temperature, O ₂ concentration, and hydrocarbon ratio R1 at bottom of BH 19C during project	20
20.	Temperature, O ₂ concentration, and hydrocarbon ratio R1 at bottom of BH 33 during project	21
21.	Temperature, O ₂ concentration, and hydrocarbon ratio R1 at bottom of BH 57 during project	22
22,	Waterflow rate at Miller Farm seep drain during project	24
23.	Rainfall periods and flow rates for Miller Farm seep drain and for water injected into boreholes	
	during water injection with fume exhaustion segment of project	24
24.	Temperature of water from Miller Farm seep drain during project	25
25.	Flowchart of data from field acquisition to data manipulation computer programs	26
A-1.	Schematic of fan assembly including test section and connecting piping	28
B-1.	Borehole communications test data, JD4243	31
B-2.	Borehole communications test data, JD4249	32
B-3.	Borehole communications test data, JD4251	33
B-4.	Borehole communications test data, JD4256	34

1

ILLUSTRATIONS

B-5. B-6. B-7. B-8. C-1. C-2. C-3. C-4.	Borehole communications test data, JD5058 Borehole communications test data, JD5059 Borehole communications test data, JD5060 Borehole communications test data, JD5064 Danny property site R_{ij} and R_{ji} values, JD4134 to JD5064 Plum Street site R_{ij} and R_{ji} values, JD4284 to JD5064 Miller Farm site R_{ij} and R_{ji} values, JD4284 to JD4307 Map of cold boundary from network ventilation analysis, Plum Street area	35 36 37 38 41 41 41 41
C-4.	Map of cold boundary from network ventilation analysis, Plum Street area	41 42
0.0.	hup of oor country non notion countries and build proporty and the terreteries the	

TABLE

1.	Early borehole communications results	12
----	---------------------------------------	----

ι	INIT OF MEASURE ABBRE	VIATIONS USE	D IN THIS REPORT					
Btu/h	British thermal unit per hour	in H ₂ O/scfm	inch of water (pressure)					
Btu/lb	British thermal unit		foot per minute					
°C	degree Celsius	kW	kilowatt					
cal/g	calorie per gram	Lpm	liter per minute					
cfm	cubic foot per minute	m	meter					
d/w	day per week	min	minute					
°F ft	degree Fahrenheit	mL	milliliter micrometer millimho per meter					
	foot	μm						
ft²	square foot	nct	nercent					
gal	gallon	ppm	percent					
gpm	gallon per minute	psi	pound (force) per square inch					
gpw	gallon per week	s	second					
h	hour	scfm	standard cubic foot per minute					
h/d	hour per day	scfm/acre	standard cubic foot per					
hp :	horsepower	-4	minute per acre					
	inch of water (pressure)	St N/ an	snort ton					
in H ₂ O	inch of water (pressure)	V ac	volt, alternating current					

ii

: ; Page

MINE FIRE DIAGNOSTICS AND IMPLEMENTATION OF WATER INJECTION WITH FUME EXHAUSTION AT RENTON, PA

By Louis E. Dalverny¹ and Robert F. Chaiken²

ABSTRACT

U.S. Bureau of Mines research to develop diagnostic methods to locate and evaluate fires in abandoned mines and waste banks and techniques to extinguish such fires was applied to an abandoned 60-acre underground bituminous coal mine (Renton, Allegheny County, PA) to locate and extinguish three separated fire zones.

Mine fire diagnostics interpret changes from baseline values in subsurface pressures, temperatures, and mine gas composition under imposed pressure gradients induced by a borehole exhaust fan. The effective gas sampling area surrounding each borehole is greatly enlarged. Sampling iterations, using a "communicating" boreholes set, provide "fire signature" information for locating both heated and cold areas. Time-dependent monitoring differentiates heating and cooling periods resulting from combustion front movement and/or fire extinguishment activities.

A water injection with fume exhaustion extinguishment effort involved injecting water through boreholes to quench the heated zones while exhaust fans actively removed heated gases from the mine. The technique was ineffective as implemented, primarily because of inadequate spreading of water from the injection points. The Bureau's diagnostic method determined the fire locations and the effectiveness of the water injection with fume exhaustion extinguishment technique.

¹Physicist.

²Supervisory research chemist.

Pittsburgh Research Center, U.S. Bureau of Mines, Pittsburgh, PA.

This report describes the development and use of mine fire diagnostics to determine the location(s) of heating in an abandoned underground bituminous coal mine and the efforts made to cool and permanently extinguish the combustion using a water injection with fume exhaustion technique. During the progress of this project, three thermally separate combustion zones were located in one abandoned coal mine.

The actual locations of fires in old, abandoned underground mines can be very difficult to determine. Ouite often, the only information to be obtained from the inaccessible workings must be from the surface through boreholes.³ Aerial photographic and thermal surveys, among other remote sensing methods exploiting various portions of the electromagnetic spectrum, detect activity, such as venting gases and vapors, at or near the ground surface. While the burning is assumed to propagate in the carbonaceous rubble in or near entries, the source of the heated combustion products can be quite distant, laterally as well as vertically, from the vent. Core drilling at these sites will produce reliable information about the various strata including rider coal seams and other layers of combustible materials, the consolidation of several rock types, and the general pitch of the mine as a whole. The borings data are necessary for any structural evaluation. The usefulness of the holes in delineating fire zones is very limited if pressure, temperature, and gas composition measurements are taken from the bottom volume of the borehole only under ambient pressure conditions. The resulting data could reflect a nearly static environment in the mine and yield information about only a very small area around the borehole bottom (perhaps on the order of 10 ft²).

Mine fire diagnostics techniques being developed by the U.S. Bureau of Mines improve upon and extend conventional sensing through boreholes methodology by employing measurements under dynamic as well as static subterranean conditions. Each borehole in a pattern becomes a site for measurement of changes in pressure, temperature, and gas composition induced by underground pressure gradients created by the suction of an exhaust fan attached to one of the boreholes in the grid. Evaluations of field measurements and laboratory gas analyses permit estimations of how the combustion is proceeding over wide areas underground and can provide accurate delineation of the cold boundaries⁴ of the heated area(s).

This type of information is essential for fire extinguishment activities, both in terms of designing an extinguishment project and determining when a fire is completely and permanently extinguished. Knowing the cold boundaries can help eliminate the possibility of chasing a combustion front during the application of an extinguishment method such as excavation. Monitoring of boreholes during the quenching or smothering of a fire can yield information about the effectiveness of the fire-fighting activity and indicate when a fire is permanently extinguished.

In the Bureau's water injection with fume exhaustion fire extinguishment technique, water with its large heat capacity and latent heat of vaporization converts to steam by absorbing energy from the heated coal and strata. Exhausting the water vapor and other gases from the mine removes a large quantity of heat from the underground fire zones. By this technique of convective heat transport (i.e., energy transfer via fume exhaustion), the coal and surrounding rock strata can be cooled and the fire permanently extinguished in a time period much shorter than if the heat were removed solely by thermal conduction (i.e., transfer of the heat energy through the solid) through the overburden. The time constant for thermal conduction can be taken as the ratio of the square of the transport distance to the thermal diffusivity. The time constant for convective heat transport can be taken as the ratio of overburden mass to the rate of exhaust of gaseous mass. For a 100-ft overburden thickness, the time constants are, for-

- Conduction, about 14 years, and
- Convection, about 1 year (at an exhaust rate of 8,000 scfm/acre).

Water injection with fume exhaustion was the heat removal fire extinguishment technique tried at Renton, PA, along with the development of new diagnostic methodologies employed to define the heated zones and to determine the progress of the fire activity. This report is divided between the activities concerned with the diagnostic portion of the project and the activities associated with the implementation of the extinguishment effort. The account begins with a description of the site and some of its fire-related history.

The work described in this report was supported through an interagency Agreement (HQ-51-CT-6-01492) with the U.S. Office of Surface Mining and Reclamation and Enforcement (OSMRE). Rolland R. Maits was the technical project officer for the Eastern Technical Center, OSMRE. Important historical data were provided by OSMRE personnel Richard Balogh, Pittsburgh, PA, and Peter Hartmann, Johnstown, PA.

³Maps detailing the entry locations often are not found in those mine map repositories that have been organized by various Federal and State agencies.

⁴By definition, a cold boundary is that line that separates burning zones (net exothermic reacting coals) and nonburning zones (net chemically stable coals).

ACKNOWLEDGMENTS

Numerous persons made significant contributions to the success of the field project. From the Pittsburgh Research Center: Thomas R. Justin, electrical engineer, Joseph P. Slivon, physical science technician, and Andrew D. Miller, physical science aid, designed and installed required field apparatus; Ann G. Kim, research chemist, and Thomas R. Justin developed computer software for data analysis; Kenneth J. Ladwig, hydrologist, designed and evaluated the drainage monitoring program employed at the site; and Helen W. Lang, supervisory research chemist, guided the development of procedures for analysis of thousands of gas samples collected during the course of the study. From Boeing Services International Inc. (BSI), Pittsburgh, PA: Mark H. Wesolowski, lead chemist, led the BSI analytical group in carrying out gas and water analyses; John F. Miller, mechanical engineer, and David S. Hutcheson, engineering aid, carried out the reduction of field data as well as leading the BSI team responsible for much of the daily field activities.

SITE DESCRIPTION AND HISTORY

The area of concern at Renton, PA (Plum Borough, Allegheny County), is shown on the U.S. Geological Survey map in figure 1. Fire activity was in an abandoned mined portion of the Pittsburgh coal seam under a hill extending over more than the 60 acres that are outlined in the aerial photograph shown in figure 2. Some 20 dwellings existed on or within a few hundred feet of the hill; a 1-million-gal municipal water storage tank had been erected in the southern central part of the site on the crest of the hill. The drift mine was abandoned about 1914, but strip mining of approximately one-third of the perimeter occurred just after World War II. The outcrop is buried except for a portion visible from an elementary school parking area on the south side of the main thoroughfare (Renton Road). The only known portal is a concrete tunnel under Renton Road about 500 ft east of the southwestern corner of the site; the tunnel is plugged with soil.

Information about ignition and spread of the fire was gathered from reports generated by Pennsylvania Department of Environmental Resources and OSMRE personnel and from discussions with residents. On-site, visual inspections verified the locations of venting gases and water vapor at the eastern-northeastern and southern sections of the site. Higher-than-normal ground temperatures (e.g., 35° C versus 19° C) were measured at several locations including some on the west side of the hill in the vicinity of a natural gas pipeline. The earliest indication of heating was observed in 1959 at a hole in the outcrop area on the eastern side of the hill (ignition area 1 in figure 2). That heated zone spread in two directions-north and south to southwest. During late 1981, OSMRE injected a fly ash grout barrier as an emergency measure to protect three dwellings on the southeast corner of the site. The high temperatures (wall and floor were warm to the touch) and carbon monoxide

(CO) concentrations (60 to 95 ppm) in the affected building decreased to ambient levels following that project. However, that combustion front apparently continued its westerly progress. The historical and anecdotal evidences imply that a second ignition area (see figure 2) in the southwestern corner of the hill became active sometime before 1973. This second heating spread both north and east. Surface venting from the easterly spread of combustion from the second ignition area ceased by 1981. The access road to the water tank was a convenient marker for the meeting of the two combustion fronts. In 1983, it was not known whether the heating was throughout the mine or only in the outcrop, and, if in the latter, which portions were affected.

To determine the location of the fire, the Bureau developed a diagnostic methodology based on knowledge garnered from various in situ combustion projects accomplished during the previous decade (1).⁵ Subsequent to establishing the extent of the Renton fire, extinguishment was attempted using water injection with fume exhaustion to cool hot coal and overburden material in situ. This technique had been successfully used to quench a mine fire following a field evaluation of Burnout Control at an abandoned underground mine (2). In that prior case, the water injection with fume exhaustion technique was used to cool the fire zone prior to excavation, rather than to completely and permanently extinguish it. The apparent success in cooling the fire zone (from 600° to 160° C) in 45 days prompted the use of this technique at Renton for complete and permanent extinguishment of the mine fire.

⁵Italic numbers in parentheses refer to items in the list of references preceding the appendixes at the end of this report.

Figure 1.-Geographical location of mine fire project site.

PREPARATIONS FOR DIAGNOSTIC STUDIES: BASELINE DATA

As indicated in the introduction, the mine fire diagnostics methodology required drilling a pattern of cased boreholes to the mine level. Prior to and concurrent with the first round of borehole drilling, aerial photographs of the area were obtained. The Soil Conservation Service provided copies of photographs taken approximately every 10 years from 1938. Color pictures were obtained from the Agricultural Stabilization and Conservation Service and

Ľ,

as part of an aerial thermal infrared study conducted by the U.S. Environmental Protection Agency (EPA) in cooperation with OSMRE (3). Although the aerial photographs were taken while the trees had leaves, the EPA study produced data that correlated well with ground observations of existing vents. The other pictures permitted approximate determination of the outcrop location resulting from the strip mining in the 1940's. Bureau

Figure 2.-Aerial view of mine fire project site.

personnel also searched for the buried outcrop on the eastern (Plum Street area) and western (Miller Farm area) sides of the hill using electromagnetic induction terrain conductivity analyses (4). The data for the western side indicated a density change in the vicinity of the previously estimated location of the outcrop (i.e., buried highwall). A graphical representation of measured conductivities and a cross-sectional sketch of the farm hillside are combined in figure 3. Three sets of measurements (L-1, L-2, and L-3) were made along the same heading, starting at an arbitrary point well into the spoil; the heading was estimated to be perpendicular to the buried highwall. Other than some trees that apparently did not affect the measurements, the major topographic features were shallow depressions caused by subsidence. (About 2 months later, a large subsidence hole about 6 ft in diameter and 15 ft in depth developed about 100 ft north of the measurement heading.) As shown in figure 3, the disturbed strata below the depressions produced high-conductivity readings relative to the undisturbed areas uphill and downhill from there. For all three sets of measurements, the conductivity coils were held so that the plane of the coil was perpendicular to the ground surface. The coil spacings for the L-1 and L-3 sets were 32.8 ft (10 m) and 65.6 ft (20 m), respectively; the operators walked in file; and the coil planes were perpendicular to the probable line of the highwall. The L-2 set used a 32.8-ft (10-m) spacing, but the operators walked in parallel with the coil planes parallel to the highwall. This latter configuration enabled a better delineation of the change in strata consolidation at the interface between the highwall and the backfill materials. On the eastern side, however, too many subsidence

Figure 3.—Terrain conductivity survey data for Miller Farm subsite.

1

pits, pieces of scrap metal, and nearby houses prevented obtaining useful data.

Mine drainage water monitoring was initiated to establish baseline data for determining any changes that might occur during the extinguishment phase when more water would be piped into the mine. The on-site inspections revealed that mine water drainage was apparent only on the western-southwestern portion of the site where general seepage across a hillside pasture had occurred for many years. A pipe in the hillside directed as much water as possible away from the farm buildings. This drain became one of two water-monitoring locations. The second location was in an Allegheny County roadside catch basin connected to a storm sewer (see figure 2). Apparently, mine water found its way into a tributary pipe connecting with the sewer in the catch basin. Both locations provided water samples, but flow measurements were obtainable only from the hillside drain where flow was measured using a watch and a bucket with volume markings. The pipe in the catch basin was so poorly positioned that, even with the use of a pipe weir, useful measured flow data could not be obtained. Occasionally, water temperatures were Results of the water monitoring will be measured. discussed later in the section entitled "Water Injection."

Following the initial inspections and acquisition of general site information, the first 25 of 129 boreholes were drilled. The specific locations were set by considering:

1. Possible mine entry directions and locations surmised from the subsidence pattern at the northern end of the site;

2. The possibility that a main entry would parallel the main ridge of the hill;

3. General knowledge about turn-of-the-century mine engineering;

4. The locations of existing surface vents;

5. A desire to obtain sufficient data to construct stratigraphic cross sections in two directions (from combined core and rotary borings data); and

6. An attempt to have the initial borehole pattern reasonably spread over the whole site.

All boreholes, whether in apparent entries or pillars, would be considered usable for diagnostic purposes; there was no prior information concerning the permeability of the subterranean network relative to the suction exerted by the fan. All initial boreholes were drilled to 5 ft below the main coal seam and cased to within 5 ft of the top of the coal. The bottoms of the casings were intended to be just above any carbonaceous material (including rider seams) where heating could occur. Twelve of the twenty-five initial holes were cored to obtain stratigraphic data and then cased with 2-in pipe; an example of core data for one of the longest holes is presented in figure 4. The other holes were rotary drilled with water (for dust suppression) and cased with 8-in pipe. The maximum depth to the bottom of the coal was 102 ft; average depth of the 25 initial holes was about 52 ft (42 ft average depth for all 129 boreholes). The surface elevation and location of each hole was determined by both ground and aerial topographic surveys (5).

Instrumentation borehole caps, illustrated in figure 5, were designed and fabricated for both 2-in and 8-in casings. On the 8-in caps (figs. 5A-5B), extra ports were provided for future needs such as inserting instrumentation for measurements at multiple depths. The caps were installed as shown in figure 5C. The bottom end of the temperature probe assembly was a 5-ft-long stainless steel sheathed, Chromel-Alumel6 type-K thermocouple. The thermocouple's length was chosen to place the plastic (signal) connectors and the plastic-coated extension wire above the casing bottom where temperatures could exceed 212° F (100° C) and melt the plastic. Temperature measurements were made using a battery-powered, handheld electronic thermometer; readings were recorded in both Fahrenheit and Celsius units. A 3/8-in-OD polyethylene tube, no shorter than the casing length, was used to take pressure measurements and withdraw gas samples from the mine itself. The tee fitting at the top of the pressuresample-tube (fig. 5A) was fitted with a septum on one side (pressure) and a compression plug on the other (gas sample). A hollow needle screwed into a Luer adapter (as in figure 5D) was connected with flexible plastic tubing to a Magnehelic pressure meter. For a pressure reading, the septum was punctured with the needle so that there would be minimal effect on the internal pressure and minimal time spent making the measurement.7 Battery-powered gas sampling pumps were sufficient to produce a sample stream (5 to 10 Lpm) from which a sample was extracted using a reevacuated 20-mL Vacutainer glass sampling tube inserted into a Luer adapter and needle assembly.8 Tube

⁶Reference to specific products does not imply endorsement by the U.S. Bureau of Mines.

⁷Two usually minor problems affected pressure measuring: (1) Sometimes liquid would condense behind the septum. An extraordinarily high-pressure value signaled that occurrence. A few taps on the tee fitting normally dislodged the liquid. (2) During cold weather, the Magnehelic pressure meter's response time increased, so that total measurement time also lengthened.

⁸Vacutainer glass sampling tubes with rubber stoppers are normally used for medical sampling. That use requires incomplete evacuation (e.g., to minimize likelihood of vein collapse); residual sterilizing (and other) gases remain in the tube and must be removed so as to not affect mine gas compositions (δ).

				RI	PINIC -	110	
ELEV. FEET	DEPTH FEET	CORE RECOVERED PER RUN (970)	RQD (7%)	2 27/2000	RUCA HARONESS	ROLA BROKENNESS	MATERIAL
1310	5						501L
1300	<i>15</i> 20						
	25	54	0		MEDIUM SOFT	VERY BROKEN	GRAY CALCAREOLIS CLAYSTONE SLIGHTLY WEATHERED
1290	30	90	94	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MEDIUM SOFT TO MEDIUM HARIQ	BROKEN TO BLOCKY	GRAY CLAYEY SILTSTONE
	35	92	50		HARIS	VERY BROKEN	LIMESTONE - FEW SHELL
1280	40	90	75		MEDIUM	BROKEN	GRAY SILTSTONE
	45	100	45	151 5 7 7 5	HARO		
1270	50		52		MEDIUM KARD MEDIUM	BROKEN	GRAY SILTSTONE
	55	96	45		* HARD		WHITE- BROWN MEDIUM GRAINED SANDSTONE
1260	60	92	<i>8</i> 0		HARO	VERV BROKEN TO BROKEN	(VELLOW BROWN CLAY FULED - 60.6'-61.5' CLAYSTONE LAYER 44.0'-64.3')
	65	92	/0				
1250	70	92	0		MEDIUM HARD	VERY BROKEN	DARK GRAY SILTSTONE
	75	/00	24		HARD MEDILIMI HARD	BROKEN	WHITE MEDIUM GRAIN SANDSTONE INTERBEDOED FINE SANDSTONE AND SUITSTONE
1240	80	100	10			VERY	SHITSTONE . FEW
1230	8 5 90	N 6	8		MEDIUM HARD	BROKEN BROKEN	SHALE PARTING (82.7.83.1' WHITE SANOSTONE LAYER)
	95	98	12		MEDIUM SOFT MEDIUM SOFT	YERY BROKEN VERY BROKEN	BLACK COAL GRAY CLAYSTONE
1220	100	100	0		TO MEOUM	YERY BROKEN	<u>TO SILTSTONE</u> BLACK COAL
12/2.5	105	/"	28		NEOIUM SOFT TO MEDIUM HARD	BRONEN	GRAY CALCAREOUS CLAYSTONE TO CLAYEY LIMESTONE

Figure 4.—Example of handwritten stratigraphic data from core boring near water tank.

Figure 5.—Borehole casing cap (A-C) fitted for water injection and for monitoring, using instruments shown in inset (D). (NPT = National pipe thread.)

purge time was about 1 min and sampling time was about 20 s. Field trials showed that one experienced person could gather data at the rate of one borehole every 5 min or less. It was faster to have one person obtain temperature and pressure data and a second person follow to take the gas sample. The time involved was important because (1) minimizing the time provided a better "snapshot" of conditions for the monitored area; (2) eventually, at least 30 boreholes were monitored 2 or more times within 4 to 6 h by 2 persons: and (3) the data gatherers needed time between sessions to rest (especially during inclement weather). All gas samples were coded for project identifier, borehole number, Julian date,9 and sample time. Barometric pressure and ambient temperature usually were recorded once each day on arrival at the office trailer. While all data were recorded eventually on paper logsheets (with a carbon copy), during inclement weather, use of a handheld, battery-powered miniature tape recorder for interim data storage simplified some of the data gathering. The data on the logsheets were entered into the VAX 780 mainframe computer at the

⁹The Julian date (JD) is the numerical representation of a specific day during the year. In this report, the letters JD precede one digit that indicates the year and three digits that indicate the day (e.g., JD4030 represents January 30, 1984).

Pittsburgh Research Center, sometimes through a video display terminal and telephone modem assembly in the office trailer. Subsequent computerized merging of pressures and temperatures from field data with associated gas concentration data from laboratory analyses was simplified by correlation using the coded borehole number and time data.

A customized "test fan" assembly was purchased for the initial studies. This fan is described in appendix A. The fan assembly in operation at a borehole is shown in figure 6. The small bulldozer shown in the figure was used to pull the skid-mounted fan assembly to the various borehole locations. Not shown in the figure is a portable electrical generator (33 kW) used to supply power to the test fan.

Three types of related diagnostic studies using the procedures described above were conducted throughout the project duration:

1. Baseline .- site quiescent; no exhaust fan operating;

2. Communications.—exhaust fan operating; neighboring boreholes sampled several times during study time of 4 to 6 h;

3. Extinguishment.—similar to communications study, but with water being injected into neighboring boreholes.

Figure 6.-Fan assembly in operation during borehole communications study.

1

DIAGNOSTIC STUDIES

The diagnostic methodology evolved as more data were acquired and analytical techniques were evaluated. These evaluations are described below. By the time of the extinguishment phase, a hydrocarbon ratio, R1, became the indicator criterion of choice. This ratio, as described later in the "Temperature and Gas Analyses" section is directly related to the heating level of the carbonaceous fuel. Using only this ratio of desorbed hydrocarbon concentrations negates effects of dilution or interference from air or combustion products. The descriptions of the analytical techniques follow in generally chronological order.

COMMUNICATIONS PHASE

After accumulation of several weeks of baseline data, communications studies began in April 1984. Interborehole communication was initially determined by measuring, at neighboring boreholes, the change in static pressure caused by turning on the suction fan that was attached to one of the 8-in-ID casings. Figure 7 depicts some typical borehole vacuum levels observed over several hours during a single communications test in which borehole (BH) 21 (figure 8, Miller Farm area)¹⁰ served as the exhaust, or suction, hole. Based on the observed vacuum and flow (21.5 in H₂O and 4,000 scfm) at the top of BH 21

 10 On maps, borehole numbers with suffix C (e.g., BH 19C) indicate holes cored to obtain stratigraphic data.

Figure 7.—Communications test borehole (BH) vacuum values and distances from exhaust BH 21 with vacuum at 21.5 in H_2O .

(14.5 ft of 8-in casing), it can be estimated that the vacuum at mine level near BH 21 was about 12 in H_2O . It is evident from the data in figure 7 that while the vacuum dissipates rapidly through the mine, it is still sufficient to influence flows several hundred feet from the suction hole. A change in vacuum of 0.02 in H_2O or greater was taken as the criterion for communication; this value was determined from the overall uncertainty in reading the low vacuum levels with a Magnehelic pressure meter.¹¹ Thus, it can be seen from figure 7 that BH 12, 24, and 25 were in good communication, BH 13 was in marginal communication, and BH 2 and 22 were not communicating with the suction hole (BH 21).

Table 1 lists several communications results found with the first 25 boreholes. While a number of borehole pairs communicated at an average distance of 283 ft, others did not communicate at an average separation of 315 ft. It is apparent here that separation distance alone is not the primary determinant factor in establishing communication. It is interesting to note that some of the borehole pairs communicated in one direction only. One possible reason for this noncommutative flow behavior is differences in fire activity as the mine atmosphere is drawn first in one direction and then in the other. The fire's acting as a source of gas and heat would tend to throttle the flow of gas between the boreholes, possibly more in one direction than in the other (7).

An assumption that the average communication distance (283 ft) corresponds to the radius of circular influence about a suction borehole could imply that a 250,000-ft² area of the mine was being sampled from a single borehole. Even if this estimate ignores the actual geometry of the mine, it is evident that the sampling area during communication is several orders of magnitude larger than the 10 ft² estimated for the static baseline coverage.

Four communicating boreholes (BH 16, 18, 19C, and 20), in the southern area (Danny property) shown on the map in figure 8, were used to study the use of sulfur hexafluoride (SF₆) tracer gas in determining the movement of mine gases under the influence of the underground pressure gradients generated by the exhaust fan. Several tracer tests were done during April 1984 using these four

¹¹Good communication was inferred from a pressure differential of at least 0.02 in H₂O from the baseline value. The most sensitive pressure meter used had a range of 0.25 in H₂O and a specified accuracy of ± 4 pct of full scale (i.e., 0.020 in H₂O).

Figure 8.-Project site contour map with locations of numbered boreholes.

boreholes to try to determine travel times between boreholes. Gas samples were analyzed for the tracer using electron capture gas chromatography. The studies clearly confirmed communication among those boreholes; however, the results were inconclusive about the restrictions along possible pathways between pairs of holes. Positive gas pressure (from heated combustible materials) could act as a restriction as could a barrier of rubble from a collapsed roof or pillar. The essentially inert nature of the SF₆ allowed it to remain in the strata for long time periods so that some of the SF₆ from a previous test interfered with attempts at subsequent tracer studies unless the suction fan was operated a sufficiently long time to remove the residual gas. The necessary amount of "purge" time would be site dependent. In the meantime, two other techniques—communications testing and mine gas analysis—were combined to more effectively obtain the necessary information. Evaluation of gas chromatography analyses for the fixed gases and the hydrocarbons in the mine gas samples (initially, duplicate samples from the SF₆ work) became the preferred approach to learning more about the underground fire conditions.

(Communication is taken as ∆p greater than 0.02 in H₂O)

Communicating borehole pair ¹	Separation distance, ft	∆p, In H₂O	Noncommunicating borehole pair ¹	Separation distance, ft	∆p, In H₂O
2 directions:			2 directions:		
9(R) ↔ 25(S)	400	0.06	16(R) ↔ 18(R)	180	0.006
21(R) ↔ 24(R)	150	.04	16(R) ↔ 20(S)	410	.013
23(S) ↔ 25(S)	260	.042	1 direction:		
25(S) ↔ 24(R)	220	.053	18(R) → 20(S)	250	.000
1 direction:			21(R) → 23(S)	400	.005
20(S) → 18(R)	250	.10	21(R) → 25(S)	380	.013
23(S) → 21(R)	400	.024	24(R) → 23(S)	310	.012
23(S) → 24(R)	310	.029	Average	315	.009
25(S) → 21(R)	380	.032	-		
Average	283	.05			

¹R and S signify borehole terminations in rubble or solid, respectively, as determined from drilling log. Arrow indicates direction toward suction borehole.

As mentioned, static pressure changes caused by the exhaust fan's suction defined communication between boreholes. Although the underground flow paths passing a borehole casing opening were unknown, for interpretive purposes it could be assumed that (1) there existed a straight path to the exhaust fan and (2) a portion of a spherical volume of influence centered at the bottom of the exhaust borehole extended beyond the neighboring boreholes' subsurface openings. Gases would flow along pressure gradients generated by the fan and intersected by the boreholes. Figure 9 depicts the mine fire diagnostics technique applied to several one-dimensional situations showing various fire locations relative to three boreholes set in a line. With the pressure gradient directed from right to left and burning occurring as illustrated in case A, combustion products (i.e., a signature) would be in evidence at all three boreholes. This is the same result as for a fire only beyond the rightmost hole. Heating between either pair of holes would not produce effects at the hole

Figure 9.-Schematic of mine fire diagnostics method.

farthest from the exhaust (cases B and C). By expanding the borehole pairs into a two-dimensional network and moving the suction hole from borehole to borehole within that network, successive communications tests will produce sufficient data to permit deducing which boreholes are in the "cold" zone and which boreholes are in the "hot" zone.

The borehole gas samples were analyzed for the following components: hydrogen (H₂), oxygen (O₂), nitrogen (N_2) , CO, carbon dioxide (CO_2) , methane (CH_4) , and the C2 through C5 alkane and alkene hydrocarbons (higher hydrocarbons) except butene and pentene. Standard gas chromatography analytical techniques vielded lower detection limits for CO and the hydrocarbons of 10 ppm and 1 ppm, respectively. When CH₄ concentrations were < 20 ppm, the concentration of the other higher molecular weight hydrocarbons could be below the 1-ppm limit. Concentrations of acetylene (C_2H_2) were so rarely reported that those few instances may have been gas chromatograph computer artifacts. Initial data analyses evaluated the absolute concentrations of CO and CO₂, their ratio values, and their "air-free" concentrations (i.e., effective concentrations after correction for the presence of air in the samples),¹² all with respect to elapsed time during exhaust fan operation (generally, a 4- to 6-h period).

The results for two communications test periods (in 1984 and 1985) carried out about 150 days apart are shown in appendix B, figures B-1 through B-8. These figures,

¹²Air-free concentrations are independent of air dilution. The equations for air-free CO and CO₂ concentrations, are, respectively, $[COaf] = ([CO]/(100.0 - (4.76 \cdot [O_2]))) \cdot 100 \text{ pct and } [CO_2af] = (([CO_2] - 0.001 \cdot [O_2]))/(100.0 - (4.76 \cdot [O_2]))) \cdot 100 \text{ pct}$. The correction is based on the assumption that the measured oxygen in the sample comes from normal air having a composition of 20.94 pct O₂, 78.08 pct N₂, 0.0300 pct CO₂, and 0.95 pct Ar.

which tabulate the daily test data from the Danny property location, are the computerized spreadsheets used to store, recover, and manipulate data. Similar spreadsheets were compiled for every day of testing and for the other two fire locations at Renton (i.e., Miller Farm and Plum Street locations). Some of the earlier communications tests involved fewer boreholes than shown, while later tests involved more boreholes (e.g., up to 39 holes at Plum Street). The baseline and communications data shown in figures B-1 through B-8 are typical and illustrate some observations relative to the use of mine gas compositions as a fire signature:

1. Absolute values of the concentrations of CO, CO_{2} CH_4 , and H_2 do not yield consistent results. Figure B-2 provides some examples: (1) Some boreholes show the same CO₂ concentration levels with very different CH₄ concentration levels, e.g., BH 18 and BH 36, suction at BH 42, or (2) increasing CO concentration corresponds with increasing CH₄ concentration in one case, but with decreasing CH₄ concentration in another, e.g., BH 20 and BH 36, suction at BH 42. H₂, which is generated when coal is heated to 300° C or greater, does not appear at many boreholes. The absence of H, during the JD4243 to JD4256 tests, except at BH 38 in figure B-3 and BH 58 in figure B-4, prompted a time-saving decision to not analyze for H₂ in every gas sample (see later tests in figures B-5 through B-8). The H₂ concentration data of figure B-3 indicate that (1) coal is burning only near BH 38 (an unlikely event), or (2) excess air dilution has lowered the H, concentration below detectable limits elsewhere (a more likely event). The BH 58 data are those for the mix of mine gases drawn to that exhaust hole, so the source of the H₂ measured could be anywhere in the affected region. However, given that (1) dilution should be greatest at the suction hole, (2) none of the neighboring boreholes indicate any H₂ (because of dilution?), and (3) the BH 58 concentration is greater than or equal to 0.1 pct, quite possibly the combustion is occurring near BH 58. As indicated, the problem in utilizing absolute gas concentrations for a fire signature is that different amounts of air dilution occur at various borehole locations in the mine. This can be seen from the large variation in O_2 concentration level in the gas samples.

2. Air-free carbon monoxide (AFCO), which, in essence, should be independent of air dilution (see footnote 12), does appear to be a useful fire signature. This is supported by the observed variation in baseline AFCO concentration data with borehole temperature as depicted in figure 10. In these baseline data, both the temperature and the gas sample are expected to represent a local mine condition (i.e., near the borehole opening), whereas in communications tests, the sampled gas will have originated some distance from the borehole opening and, hence, represent some other temperature. It is evident that temperatures above 60° C are associated with significant changes in the baseline AFCO concentration. However, it should be pointed out that when the O_2 concentration exceeds 17 pct, the calculated value of AFCO concentration is inherently uncertain. This arises from the amplification of relative errors when arithmetical subtraction is carried out between two large numbers, each having a smaller relative error. This same error enhancement applies to the Jones-Trickett ratio (JTR), which is defined as (8-9):

JTR =
$$\frac{([CO_2] + 0.75[CO] - 0.25[H_2])}{(0.265 \cdot [N_2] - [O_2])}.$$
 (1)

Figure 11 depicts the variation of baseline JTR (where O₂ concentration is greater than 17 pct) with borehole temperature. It is evident that, independent of a dilution problem, the JTR does not appear to be a particularly good indicator of fire and nonfire areas. Most of the reliable JTR values (i.e., when O₂ concentration is < 17 pct) fall in a relatively narrow range between 0.65 and 0.85, independent of borehole temperature. There is also an apparent separate grouping of larger JTR values (2.0 to 3.0) over the temperature range 40° to 70° C. Oxygen-rich combustion of coal can be shown to yield JTR values of about 0.8, while fuel-rich combustion should produce somewhat higher values (1.0 to 1.5) (10-12). Mitchell (10) has suggested that JTR values greater than 1.6 be considered as "suspect" and not considered as valid data. However, this conclusion cannot be justified without knowing the reason for the suspect result, such as improper sampling or dilution with CO₂, which likewise would reflect

Figure 10.---Air-free carbon monoxide (AFCO) versus borehole temperature, baseline data, Danny property. AFCO (ppm) = $\frac{[pct CO]}{100.0-4.76 \times [pct O_2]} \times 10^4$.

Figure 11.—Jones-Trickett ratio (JTR) versus borehole temperature, baseline data, Danny property. $JTR = \frac{[CO_2] + 0.75 [CO] - 0.25 [H_2]}{0.265 [N_2] - [O_2]}.$

on the validity of all the measured JTR data. Additionally, JTR values greater than 1.6 are quite feasible for certain combustion reactions. E.g., the 50 pct conversion of CO to CO₂ would lead to JTR = 7.0.

While the JTR by itself is not dependent on temperature, it is dependent on the coal combustion process, which, in turn, is expected to raise the temperature of the surroundings. Assuming that the sampled baseline mine atmosphere (i.e., without fan suction) represents the local condition about the borehole, elevated JTR values (greater than 0.5) at elevated temperature boreholes (greater than 30° C) are consistent with active burning near these boreholes. However, figure 11 also depicts elevated JTR values at lower temperature boreholes, a fact inconsistent with a nonfire (i.e., cold) condition near the borehole. This apparent lack of consistency among the measured JTR values is not indicative of a good fire signature.

3. An examination of the CO-to-CO₂ concentration ratio (fig. 12), which is independent of air dilution, and which has been used as a fire signature, suggests that it too is not totally consistent with borehole temperatures. From the Bureau's work at the Calamity Hollow (Allegheny County, PA) abandoned mine fire (12), it might be expected that the combustion products from burning coal underground would yield CO-to-CO₂ concentration values between 0 (complete combustion) and 0.04 (incomplete burning). While this is the range of values observed at Renton, their relationship to the mine fire is somewhat uncertain. E.g., values of a ratio near zero can be seen for boreholes which, by all other indications, appear to represent the cold coal zone (e.g., BH 16 and 18, figures B-1 through B-8 in appendix B), while values of

Figure 12.—Carbon monoxide-to-carbon dioxide concentration ([CO]-to-[CO₂]) ratio versus borehole temperature, baseline data, Danny property.

the ratio in the range of 0.02 to 0.04 do seem to be consistent with combustion activity. The apparent discrepancy of results between a smoldering mine fire (i.e., Renton) and an accelerated mine fire (i.e., Calamity Hollow), could be due to the air-dilution effects noted above. Other possible explanations could be the presence of CO₂ from noncombustion underground sources (e.g., bacterial decomposition) and/or the selective absorption of CO as the gases flow through the underground rubble toward the boreholes. In either case, the CO-to-CO₂ concentration ratio, while indicative of fire activity, does not by itself appear to be a definitive fire signature.

4. Previous Bureau work (13-14) indicated that the ratio of the concentration of higher hydrocarbon gases (C₂ to C_5) to that of CH_4 in the normal atmosphere of bituminous mines (i.e., at ambient temperature of about 18° C) is between 0.01 and 0.05, but at temperatures greater than 50° C, the ratio would increase rapidly with increasing coal temperature. It was suggested that the ratio of the sum of the C_2 to C_5 hydrocarbons concentrations to the CH₄ concentration be used as a signature of fire. The values of C_2C_5 to CH_4 shown in appendix B (figs. B-1 through B-8) and summarized in figure 13 appear to substantiate this suggestion. As will be described later (in the "Analysis of Extinguishment Effort Data" section), a somewhat different version of the ratio, R1 (equation 3), became the primary fire signature for interpreting the progress of the water injection with fume exhaustion extinguishing activities.

Interpretation of the communications data was done graphically using an enlarged section of the map of a set of boreholes and some colored ink pens. The variation

and a state

and a second sec

over time of (1) various fire signatures, (2) O_2 concentrations, and (3) the degree of communication with a particular exhaust borehole were all considered. Three colors represented the value's having increased, decreased, or remained the same. This simple procedure generated a readily interpreted representation of the effects of suction on the concentration values at each borehole. This colored graphical approach to interpreting the communications data is represented by the symbolic format shown in figure 14, which is based on the Danny property data in figures B-1 through B-8. An increase in O, concentration and/or a decrease in fire signature value implied that the underground atmosphere was being diluted with gas having component concentrations more like air, while the converse $(O_2$ concentration decrease and/or fire signature increase) implied dilution by gas from another portion of the mine that contained more temperature-dependent desorption gases. Note also was made of the quality of communication between the exhaust hole and each neighboring borehole. Each communications study generated data for another map. By repeating the mapping analysis several times for a set of boreholes. it was possible to determine whether a cold boundary existed for that area and what changes were occurring with time.13

¹³Another diagnostic technique developed during this project to help map the cold boundaries involved network ventilation analysis of the measured borehole vacuum and exhaust flow values. The technique does not depend on gas composition as a fire signature, but instead uses anomalies in calculated fire resistances between borehole pairs. The theoretical basis for the method and its limited application to a portion of the Renton data are described in appendix C.

Figure 13.---Hydrocarbon ratio (HCR) versus borehole temperature, baseline data, Danny property. HCR = $\frac{\Sigma ([C_2 H_2] \text{ thru } [C_5 H_{12}])}{[CH_4]}$.

A good estimate, based on the mine atmosphere data, then could be made for the approximate location of the cold boundary within the dimensions of the borehole pattern. That boundary was taken as the line of boreholes that produced gas samples showing a time-dependent decrease in concentrations of desorbed gases and combustion products while the fan was operating. The borehole spacing defined approximately how close the combustion front was to the inferred boundary. Figures 15 and 16 depict the mapped results for the Danny property. These data are from the summary data in figure 14 and show evidence that combustion was decreasing in the vicinity of BH 20 and increasing near BH 59. Similar data interpretations were made for the other areas.

At Renton, as more data were accumulated and analyzed, new boreholes were placed to obtain a more accurate estimation of the boundaries of the heated zones. A typical radius of effect of some 250 ft would be a reasonable distance to expect to measure differential pressure changes for this type of underground mine situation (see table 1). Measurable pressure changes were observed as far as 700 ft from the exhaust hole. It was possible,

Suction hole	43	42	38	58	ary	39	44	58	37	ary
JD	4243	4249	4251	4256	Ĕ	5058	5059	5060	5064	E C
вн					Sur			Sur		
16	(\circ)	\bigcirc	(<u>©</u>)	()	(C)		•	-	-	—
18	\odot	\odot	\odot	0	С	\odot	\odot	\odot	(6)	С
19	\odot	A	A	$\overline{\mathbb{V}}$	(C)	\odot	\odot	$\overline{\mathbb{V}}$	A	(C)
20	A	A	A	A	н	0	\odot	\odot	\odot	С
35	(6)	(<u>(</u>)	(i)	(ē)	(C)	(\bigcirc)	$\langle 0 \rangle$	$\langle 0 \rangle$	(<u>)</u>	(C)
36	·A	A	\forall	A	н	\bigcirc	$\overline{\mathbb{A}}$. ()	\odot	(C)
37	∇	V	V	(+)	(C)	∇	$\overline{\mathbb{V}}$	V	\circledast	С
38	Ŧ	(+)	(\mathcal{R})	(+)	Н	\forall	Ð	(+)	(\mathbf{f})	Н
39	A	\odot	\odot	$\overline{\mathbb{V}}$	С	()	\odot	\odot	A	(C)
40	\odot	\odot	\odot	A	С	A	\heartsuit	A	\oplus	н
41	$\overline{\mathbb{V}}$	$\overline{\mathbb{V}}$	(\mathbf{f})	$\overline{\mathbb{V}}$	С	$\overline{\mathbb{V}}$	$\overline{\mathbb{V}}$	∇	٢ō/	С
42	A	\circledast	$\overline{\mathbb{V}}$	∇	С	∇		\forall	$\overline{\mathbb{V}}$	(C)
43	\otimes	A	\mathbb{A}	\odot	н	\mathbb{A}	A	\odot	A	н
44	\odot	\odot	\odot	\odot	С	\odot	\circledast	$\overline{\mathbb{A}}$	(6)	С
58	\forall	$\overline{\mathbb{V}}$	\heartsuit	\otimes	С	A	\mathbb{A}	()	A	н
59	∇	\heartsuit	$\overline{\mathbb{V}}$	$\overline{\mathbb{A}}$	С	A	\odot	$\overline{\mathbb{V}}$	A	н
				KEY						
с	Cold	area			Find	Fire sig	inature	2		
н	Hota	rea				+ Pr	esent			
()	Uncer	rtain o	r mix	ed	Duri	o No Ing suct	t pres	ent		
<u>م</u> ک	signa	ls			201	$\wedge \wedge$	incred	sino		
-8	Suctio	on nole	د سام سام ا			$\forall \forall$	Decre	asing		
38	Poor	COMMU	inicati Inicati	on on		ŎĈ) Same	level		
V 1.1	1.001 (Journa	moun	vn.		\sim \sim				

Figure 14.—Summary of fire signature information from eight borehole communications tests.

 \triangle

Figure 15.—Map of hot and cold boreholes determined from fire signature values, 1984 test days, Danny property.

100

Scale, ft

Elevation, ft

therefore, to quickly survey about 4.5 acres from one borehole alone using the suction fan method. In contrast, a gas sampling pump might affect a 10-ft-radius area around the bottom of a casing—about one-thousandth of the area that could be affected by an exhaust fan's suction.

Most of the boreholes indicated on the map in figure 8 were drilled for use in the communications studies; some of the last ones drilled (high numbers) were added particularly for use as injection and monitoring holes extinguishment activities described below. during Monitoring of the boreholes already in place during previous months had confirmed the slow movements of the three combustion fronts and their directions of movement (as previously described in the "Site Description and History" section). Therefore, some injection boreholes were placed ahead of where each front would be expected when extinguishing began. As a result of the communications tests, three thermally noncontiguous subsites were delineated. They were designated as the Danny property area, the Miller Farm area, and the Plum Street area (fig. 8). It was significant that, while combustion

Figure 16.—Map of hot and cold boreholes determined from fire signature values, 1985 test days, Danny property.

products were detectable in the central part of the mine, no heating was occurring there.

EXTINGUISHMENT EFFORT

Physical Plant

The fire extinguishment phase of the work was a firsttime attempt at using water injection with fume exhaustion to completely extinguish an abandoned mined land fire. The only previous field use of the water injection with fume exhaustion technique was for cooling the strata affected by a Burnout Control project fire prior to excavating the fire zone (2). That quenching action was quite successful and it was hoped that implementation of the technique would result in stopping the combustion on the three subsites at Renton.

The basic premise of water injection with fume exhaustion was to quench the fire by heat removal. At each subsite an exhaust fan connected to a borehole exerted suction on the mine network while water was injected into neighboring, communicating boreholes. These boreholes also were used as monitoring stations. The water was expected to saturate the underground gases flowing along pressure gradients generated by the fan. Previous communications studies had shown that there was gas movement through heated zones; moisture-laden gas could be expected to absorb heat energy from the hot materials. Conversion of liquid water to steam that could then be exhausted from the mine would significantly enhance heat removal. It was understood that air would be drawn into the underground system with both positive and negative effects with respect to the fire:

1. Air flowing over burning coal would tend to enhance the burning (negative);

2. Dilution of desorbed hydrocarbon gases would tend to make gas chromatographic detection of the hydrocarbons more difficult (negative);

3. Air flowing over heated, but nonburning, coal and rocks would cool those strata and act as a heat transfer medium for removing heat from the mine (positive).

The potential problem that additional air would supply more O₂ to the burning strata, and possibly spread the fire, required that the progress of the water injection with fume exhaustion technique be examined closely using the fire diagnostics technique. It was believed (at least at the start of the project) that fire quenching through widespread water injection would negate the possible fire enhancement from increased flow of air in the mine by rapid cooling of the fuel and by exclusion of air due to steam formation. Previous experience at the Calamity Hollow Burnout Control site had indicated that energy removal and subsequent cooling of the strata could be expected (2). In principle, once underground fuel temperatures decreased below their calorimetric self-heating point [approximately 158° F (70° C) for the case of Pittsburgh Seam coal] (15), plain air injection without water would suffice to further cool the mine media.

Consideration of the fact that the three subsites were thermally noncontiguous, coupled with the assumption that it might be necessary to operate each subsite independently from the others, suggested that separate fans, rather than one large, centrally located unit, be used. Each of three combustion air-type fans was driven by a 40-hp electric motor and was designed to draw 4,000 scfm of air at 70° F (21° C). Their physical design was essentially the same as that of the test fan previously used (see appendix A). Increased airflow and a slightly larger maximum differential pressure (about 40 in H₂O) were expected to enhance entrainment of moisture into the induced subterranean airflows. Based on the communications studies, a central borehole was chosen to be the exhaust fan location for each subsite: Danny-BH 39, Miller-BH 29, and Plum Street-BH 76. After about 2 months of water injection with fume exhaustion operation and the drilling of more injection boreholes, the test fan was put into service at the northern end of the Plum Street area (at BH 47) to enhance the vacuum pressure differentials at the boreholes on the cold side of the combustion front.

In consideration of the relatively long-term nature of the extinguishment effort, an electrical distribution network conveying utility mains power at 440 V ac was put in place. Each fan had a motor starter so each could be switched separately from the others even though each leg of the electrical network also had individual circuit breakers. Additionally, transformers produced 120-V-ac power for other uses such as charging pump batteries and powering space heaters and fans in small trailers on the subsites. Each trailer sheltered the water injection with fume exhaustion system operator-data gatherer during weather extremes, provided a place to store equipment, and served as an office.

A gravity-fed water distribution network consisting of about 3.400 ft of 2-in-diam and 4.500 ft of 0.75-in-diam plastic pipe was connected to a hydrant located at the municipal water tank at the top of the hill. A pilot valve shutoff system installed between the hydrant and the piping insured against uncontrolled outflow should a connection downstream break. Standard in-line water meters were placed at the hydrant and at appropriate locations in the network to monitor flow rates and record cumulative flow data. Each working day, midmorning and midafternoon readings of the flowmeters were recorded manually. At the borehole end of the network, the water flowed through a ball valve and into 0.375-in-OD polyethylene tubing extending to the bottom of the casing. The tubing terminated with a brass spray nozzle chosen to produce a conical pattern of 25- to 400-µm-sized droplets at a minimum water pressure of 10 psi. (This plumbing scheme is depicted in figure 5.) On each subsite, at least one borehole location had a pressure gauge as a monitoring point for that portion of the system. (Figure 17 is a photograph of the monitoring point near Renton Road.) An estimate of the typical pressures at the spray nozzle of 40 to 45 psi was made from the readings of the borehole water pressure gauges. The minimum regulated flow rate was about 0.6 gpm; the manufacturer's specified maximum flow rate at 50 psi was 1.22 gpm.

Figure 17.—Injection water pressure gauge, pipe, and valve at top of borehole casing.

Analysis of Extinguishment Effort Data

Temperatures and Gas Analyses

As a general measure of the effectiveness of the water injection with fume exhaustion effort, baseline temperatures for the boreholes were plotted versus time. Essentially all boreholes indicated approximately constant or increasing baseline temperatures.

The following discussion of this phase of the project refers to the data shown in figures 18 through 21 for four boreholes. The exhaust data were obtained while the fan was running during communications tests, but the borehole shown was not necessarily a suction hole. The boreholes were chosen because the data shown are representative of the different levels of activity occurring across the site. Analyses of temperature data and the associated O_2 concentration data provide some insight to the various possible results of the water injection with fume exhaustion activity occurring concurrently throughout the site. Also presented in figures 18 through 21 are plots of the ratio R1 versus time. R1 is a ratio that evolved from the previously mentioned analyses using ratios involving the sum of hydrocarbon concentrations and the CH₄ concentration derived from a gas sample analysis (16). As defined,

$$R1 = \frac{1.01[THC] - [CH_4] \cdot 1,000}{[THC] + 0.01},$$
 (2)

where $[THC] = \text{total volume concentration, ppm, of} C_1 \text{ through } C_5 \text{ hydrocarbons,}$

 $[CH_4]$ = volume concentration, ppm, of CH₄,

and the constant 0.01 is included only to prevent attempted division by zero (by a computer) when there are no hydrocarbon values in the sample analysis. This ratio was defined to relate the quantity of desorbed hydrocarbons to the level of heating of the carbonaceous fuel. Concurrent with the latter part of the Renton activity was a laboratory study to establish a data base for correlation with field data (16). From experimental work on Pittsburgh Seam coal, the following inferences can be draw_u.

R1 =	0	when	[THC] = 0;
	10		$[THC] = [CH_4];$
	10-50		conditions are normal;
:	50-100		there is possible heating;
	>100		heating is occurring.

A single temperature may not be associated with a specific R1 value because the ratio is derived from concentrations of hydrocarbons that are desorbing from a finite amount of coal, and therefore, those concentrations (or the ratio) could be numerically the same both at low temperature when little desorption occurs and at high temperature when most hydrocarbons are gone. This fact indicates the need for time-dependent monitoring to determine whether the fuel is heating or the combustion already has occurred.

Baseline and exhaust data for BH 14 are shown in figure 18. BH 14 was drilled into a probable entry as indicated by the drill log record of small voids and red dog (ash). The area was within a few hundred yards of the initial ignition point and may have experienced combustion as early as 1960. The top of the rubble was about 36 ft below the surface, and no water was injected into this borehole because of its low temperature. The data

Figure 18.—Temperature, $\rm O_2$ concentration, and hydrocarbon ratio R1 at bottom of BH 14 during project.

Figure 19.—Temperature, O_2 concentration, and hydrocarbon ratio R1 at bottom of BH 19C during project.

Figure 20.—Temperature, O_2 concentration, and hydrocarbon ratio R1 at bottom of BH 33 during project.

Figure 21.—Temperature, O_2 concentration, and hydrocarbon ratio R1 at bottom of BH 57 during project.

(fig. 18) show that there was less than a 5° C drop in the local temperature even with the exhaust fan drawing cooling air through the heated mass (for reference, unheated strata temperatures were 12° to 14° C). The temperature did fall while the O₂ concentration increased from the time of drilling and preliminary communications studies. Initiation of the water injection with fume exhaustion activity brought the O₂ concentration level to near the atmospheric value of 20.9 pct. Without other information, the initial, baseline R1 values for the gases sampled at the borehole would indicate heating at that location. The values calculated later imply a condition of little hydrocarbon desorption. Between days 460 and 640 and while the fan was not operating, migration of desorbed gases from heated fuel in the general vicinity may have caused the baseline R1 value to increase to the higher values calculated for those 2 days. The data comprehensively indicate that the strata around BH 14 were not reignited with the added O_2 and continued their slow cooling.

The data for BH 19C (fig. 19) indicate that prior to the "continuous" 6 h/d, 5 d/w fan operation (i.e., prior to approximately day 534 on this subsite), the baseline temperature was slowly decreasing. Water injection produced an apparent temperature decrease, which is contradicted by the baseline data for the same period. Those baseline data include a 7° C elevation from which a slight increase in combustion in the vicinity is inferred. There is the possibility that the water cooled the thermocouple while having little effect on the heated carbonaceous material. Data from communications tests run after day 700 show that those temperatures taken with the fan operating are close in value to the baseline measurements made then and some 2 years earlier. BH 19C O₂ concentrations increased toward the normal air value when the fan was operating, implying that the subsurface atmosphere drawn past this borehole was not affected substantially by any combustion in the mine area upstream on the flow path extending through BH 19C to the exhaust hole. The conclusion inferred from comparing both O_2 concentration and temperature baseline data was that heated combustion products (from accelerated burning nearby, but not on the induced flow path) migrated to the vicinity of BH 19C via natural underground flow patterns when the fan was not running. While two explanations for the temperature increase could be advanced-local combustion or movement of heated gases-the added information from the gas analyses substantiates the latter conclusion. The variation over time of the R1 values corroborates the above analysis, particularly through day 500. The exhaust data imply heated material upstream of the borehole; the baseline numbers are less straightforward in interpretation. The post day 780 data again imply possible heating in the general vicinity.

BH 33 was drilled into a probable entry more than 100 ft inside the mine and away from the apparent path of the combustion front moving northward along the western (buried) crop line. While the temperature at BH 33 initially was about 12° C (fig. 20), the temperature 50 to 100 ft to the west was about 33° C. Following initiation of water injection with fume exhaustion activity at that subsite (after day 540), there was a substantial increase in temperature both for baseline and exhaust values. These data alone could indicate one of the following two conclusions: (1) Combustion had begun at the borehole site, or (2) hot combustion products were migrating from a burning volume upstream on a natural flow path passing BH 33. The O_2 concentration data provide a more complete explanation. Drops in O₂ concentration values prior to water injection with fume exhaustion could be the result of infiltration of heated combustion products into the vicinity. perhaps as a result of communications tests. It is seen that the concentration values tend to return to the value in atmospheric air; this fact diminishes the likelihood of the borehole being on a natural flow path connected to a hot area at that time. However, concurrent with the temperature increase at water injection with fume exhaustion initiation, the O₂ baseline concentration decreases continually, thereby again implying either conclusion 1 or 2 stated above. More communications tests would be required to determine which conclusion is correct, but the higher initial temperatures and gas compositions at other boreholes closer to the outcrop support the inference of new burning near or at BH 33. Quite possibly, heated gases drawn to the vicinity during water injection with fume exhaustion conditioned the carbonaceous material toward rapid combustion by drying the fuel. Subsequently, spraving water on the material could have increased temperature via the exothermic heat of wetting reaction. R1 baseline values indicate heating whereas R1 exhaust data show normal conditions prior to day 540. A reasonable conclusion from both the O₂ concentration and R1 data is that there is combustion occurring upstream and, possibly, in the immediate vicinity of this borehole.

On the eastern side of the site, the combustion front passed through BH 57's location after traversing BH 14's site. The temperature and gas data (fig. 21) both show that an increase in local combustion was evident from the time of instrumentation cap installation. The annular space around the casing, although plugged with soil, probably acted as a chimney for the already warm gases in the rubble at the bottom of the casing. Convection then would cause more air to be drawn to the zone, thus sustaining oxidation, slowly rising temperatures, and evaporating water that sometimes condensed around the casing at the surface. The suction of the exhaust fan during water injection with fume exhaustion operation pulled even more air into the area; the results were the dramatic 24

changes in temperature indicated on the graph. The conclusion made from these data is that the hot fuel producing the heated gases sampled at the borehole burned to completion. As the exhaust fan continued to induce cool airflow over the hot ash, temperatures decreased and less O_2 was consumed. It is of interest to note in the early baseline data that the O_2 concentration dropped, during a period of 80 days, from about 14 pct to about 1 pct and remained at that level for another 120 days while the temperature rose about 45° C (to approximately 75° C) during the whole 200-day period.

Water Injection

; i

After about 4 months of injecting water for about 6 h/d, 5 d/w, two plumbing modifications were made to saturate the strata in the immediate vicinity of the borehole in case there was combustion above the bottom of the casing. Also, any gases flowing past the wet surfaces would become saturated with water vapor. First. a 2-week-long replumbing of injection piping was done; this task began on September 12, 1985. A substantial portion of water now bypassed the spray nozzles, flowed through 0.375-in-OD tubing placed along the outside of the casing, and exited only a foot or two beneath the surface. Water injection with fume exhaustion activity continued during the replumbing time and the following 2 weeks. Second, after a 2-week hiatus for data evaluations and to allow the Pittsburgh Research Center analytical laboratory to complete some chromatography analyses, the outside water injection tubes for 24 boreholes were modified by perforating (with eight 0.0625-in holes) the tubing, which was then looped into a ring around the casing. The revised injection methods and increased waterflow at some boreholes had no measurable effect on the general combustion activity.

During the extinguishment activity, a total of approximately 7.1 million gal of water was injected into the underground workings over a 6-1/2-month period (May 14 through December 13, 1985). Analysis of mine drainage flow rates indicated augmentation of the normal output by water injected at the boreholes. However, no new drains were observed anywhere on the site.

Figures 22 through 24 present data associated with the Miller Farm seep drain, the primary mine water monitoring point. While figure 22 indicates that flow rates varied within a range of about 2 to 56 gpm during a 3.5-year period, it is also evident that the running average, calculated using all the measurements successively, remained fairly constant at about 12 to 14 gpm from the installation of a drain pipe extension in May 1984 through the first 8 months of 1985. Subsequently, starting in late August 1985, there was a large increase in the quantity of water injected during the water injection with fume exhaustion procedure followed by about 3 weeks of rainy weather (October to November). The graph in figure 23 shows that, unless there was a long delay in the injected water's movement through the mine, the rain had a greater effect on the seep's flow rate than did the injected water.

Figure 24 shows that the temperature of the drainage water was fairly constant for each set of measurements

Figure 22.—Waterflow rate at Miller Farm seep drain during project.

Figure 23.---Rainfail periods and flow rates for Miller Farm seep drain and for water injected into boreholes during water injection with fume exhaustion segment of project.

Figure 24.—Temperature of water from Miller Farm seep drain during project.

prior to and at the end of the water-injection activity. The drainage water temperature was higher than that of unheated strata (12° to 14° C) by as much as 10° C. Thermal energy was being removed from the heated strata, the ultimate goal to effect extinguishment. However, the following calculation shows that the energy removed was insufficient to achieve that goal. Based on many visual observations, the total quantity of water draining from the mine at any specific time was estimated to be about

twice that from the Miller Farm seep drain in order to account both for water seeping elsewhere across the same hillside as the drain and for water exiting into the roadside catch basin mentioned earlier. A thermal energy flow calculation using an average total waterflow rate of 28 gpm and a heat capacity, $C_v = 0.999$ cal/g, for water at an average temperature of 22° C yields a value of approximately 25,208 Btu/h. Over a year, the energy removed approximates the energy released by complete combustion of about 8.8 st of coal with a heating value of 12.500 Btu/lb. In the abandoned mine situation, the overall heating value of the burning material (carbonaceous shale, in part) is lower, combustion is incomplete, and much of the liberated energy is stored in the adjacent strata and the fuel itself instead of heating the flowing mine water. The affected mass, therefore, is several times greater than that reflected in the quantity of energy removed by the mine drainage. For completeness, it is noted that the drainage liquid had an approximate pH 3: it was a warm acid that flowed into the environment outside the old mine.

COMPUTER-ASSISTED DATA ANALYSES-DISCUSSION

The flowchart shown in figure 25 illustrates the method used to process the data acquired during field activities. Numerical data from borehole measurements, mine gas and mine drainage water analyses, and textual information concerning drilling and other events were entered into various computer files stored on disc in the Pittsburgh Research Center's VAX 780 computer. For efficiency, analytical laboratory personnel entered the data generated from analyses of gas and water samples; these data were the primary data base used for diagnostic evaluations.

Manipulations of the data were accomplished using various packaged and in-house-produced computer programs, as indicated in the bottom row of the diagram. Numerical data from the field measurements and the laboratory analyses were sorted with respect to sample date and time and borehole number and then merged to simplify accessing the data. Graph-generating programs were also used; figures 10 through 13 and 18 through 24 are typical of the output graphs. Although the results were not used to determine actions during the field project at Renton, two other mathematical manipulation programs have been applied to the data. One program generated contour maps of a variable's value as a function of location (defined by the borehole). A matrix-solving program generated solutions used in network analyses of the effects of the heating on pressure differences between boreholes.

The initial work using the extensive Renton data base and these latter two packages indicates the possibility of new mine fire diagnostics tools to better, and more economically, define underground fire locations using the borehole and exhaust fan system.

Ongoing evaluations of data processing activities for this and two other Bureau projects indicate that a variety of data can be efficiently recorded and retrieved using spreadsheet programs designed for use with a personal computer (17-18). Various calculations can be done automatically by available spreadsheet software. As importantly, portable personal computers are sufficient for much of the data processing; when necessary, data can be transferred to larger capacity computers. Communication with a central computer is readily accomplished via telephone modem from field sites. The major advantage, currently, of mainframe computers is the capability to operate quickly on many large files. Data manipulation operations of this kind are done, during comparisons of (1) data describing several boreholes and/or (2) data gathered over an extended period of time. Data files in these cases may contain several thousand lines of data. A spreadsheet program on a personal computer does well at displaying and manipulating all available data for one borehole. In some cases, it may be useful to transfer consolidated data records from a mainframe machine to a

Figure 25.-Flowchart of data from field acquisition to data manipulation computer programs.

personal computer. Recent advances in graphics software allow representing spreadsheet records in various graphical formats.

It was found to be useful and convenient to store even infrequently accessed data such as borehole drilling logs and daily activity text logs in the computer. At the least, the data were available to anyone needing them even if the original logsheets were elsewhere. Proper encoding of these types of data allows easy cross-referencing with the wholly numerical data.

SUMMARY AND CONCLUSIONS

Novel mine fire diagnostics methodology for remote delineation of combustion zones in abandoned underground coal mines was developed and shown to work at a field site. The locations of three such zones were determined at the Renton, PA, abandoned mine fire site. The zones, thermally separate from each other, included a total area of approximately 11 acres out of about 60 acres of mine workings bounded by the buried outcrop. The techniques employed (1) drilled boreholes into an underground mine, (2) an exhaust fan attached to one of the boreholes, and (3) monitoring pressure, temperature, and gas concentrations at the bottoms of the boreholes. Evaluations of changes in the magnitudes of borehole pressure, temperature, and gas concentration values generated the information necessary for drawing maps of the heated areas. Long-term monitoring produced the data that confirmed the suspected movement and direction of the combustion fronts. Computerized manipulation of tens of thousands of pieces of data was carried out during the development and application of the diagnostic effort. Exclusive of the time required to acquire and install equipment and to have boreholes drilled, the diagnostic activity required 8 to 10 months. With the knowledge now available, it is likely that the time for diagnostic work could be significantly shortened.

The water injection with fume exhaustion technique to extinguish the combustion through heat removal was tried without success. The system was not able to transport sufficient quantities of water to the burning materials to absorb and remove the thermal energy being produced and, thus, to compensate for the maintenance and probable acceleration of the combustion at some locations in all three subsites. It is suspected that the burning was occurring in the carbonaceous roof strata and that the water agglomerated and flowed away before sufficient moisture made contact with all the heated strata. Although water-saturated gases were expelled from the mine by the exhaust fans and temperature and gas concentration changes indicated that some localized regions were being cooled, the overall effect was that the combustion continued at all three subsites. A more effective delivery system for the water (perhaps foam) will be required to accomplish the required quenching and heat removal.

REFERENCES

1. Chaiken, R. F., L. E. Dalverny, M. C. Irani, and I. A. Zlochower. Burnout Control of Fires in Abandoned Coal Mines and Waste Banks by In Situ Combustion. Paper in Proceedings of Seventh Underground Coal Conversion Symposium. U.S. Dep. Energy, CONF-810923, Sept. 1981, pp. 380-393.

2. Chaiken, R. F., E. F. Divers, A. G. Kim, and K. E. Soroka. Calamity Hollow Mine Fire Project (In Five Parts). 4. Quenching the Fire Zone. BuMines RI 8863, 1984, 18 pp.

3. Shelton, G. A. Thermal Infrared Survey, Underground Mine Fire, Renton, Pennsylvania, June 1983. Adv. Monit. Syst. Div., Environ. Monit. Syst. Lab., Office Res. and Dev., U.S. EPA, Las Vegas, NV, TS-AMD-82082f, Sept. 1983, 8 pp.

4. McNeill, J. D. Electrical Conductivity of Soils and Rocks. Geonics Limited, Mississauga, Ontario, Canada, TN-5, Oct. 1980, 22 pp.

5. English, S. P., and F. B. Newman. Geologic Exploration. Office of Surface Mining, Renton Mine Fire, Allegheny County, Pennsylvania, Project 84-133, GAI Consultants, Monroeville, PA, Feb. 27, 1984, 2 pp.

6. Freedman, R. W., B. I. Ferber, and W. H. Duerr. Gas-Sampling Capability of Vacutainers. BuMines RI 8281, 1978, 6 pp.

7. Greuer, R. E. Influence of Mine Fires on the Ventilation of Underground Mines. Final Report on Contract No. S0122055 with the BuMines OFR 74-73, 1973, 173 pp.; NTIS PB 225 834.

8. Jones, J. H., and J. C. Trickett. Some Observations on the Examination of Gases Resulting From Explosions in Collieries. Trans. Inst. Min. Eng., v. 114, 1954-55, pp. 768-787.

9. Chaiken, R. F., L. E. Dalverny, M. E. Harris, and J. M. Singer. Simulated In Situ Combustion Experiment. Paper in Proceedings of 4th Annual Underground Coal Conversion Symposium, Steamboat Springs, CO, July 17-20, 1978. U.S. Dep. Energy, SAND 78-0941, June 1978, pp. 515-526.

10. Mitchell, D. W., and F. A. Burns. Interpreting the State of a Mine Fire. MSHA IR 1103, 1979, 18 pp.

11. Chaiken, R. F., J. M. Singer, and C. K. Lee. Model Coal Tunnel Fires in Ventilation Flow. BuMines RI 8355, 1979, 32 pp.

12. Chaiken, R. F., L. E. Dalverny, and A. G. Kim. Calamity Hollow Mine Fire Project (In Five Parts). 2. Operation of the Burnout Control System. BuMines RI 9241, 1989, 35 pp.

13. Kim, A. G. Low-Temperature Evolution of Hydrocarbon Gases From Coal. BuMines RI 7965, 1974, 23 pp.

14. Kim, A. G. Experimental Studies on the Origin and Accumulation of Coalbed Gas. BuMines RI 8317, 1978, 18 pp.

15. Smith, A. C., and C. P. Lazzara. Spontaneous Combustion Studies of U.S. Coals. BuMines RI 9079, 1987, 28 pp.

16. Kim, A. G. Signature Criteria for Monitoring Abandoned Mine Fires. Paper in Proceedings of 8th Annual National Abandoned Mine Lands Conference (Billings, MT, Aug. 11-15, 1985). MT Dep. State Lands, 1986, pp. 8-26.

17. Chaiken, R. F., and L. G. Bayles. Burnout Control at the Albright Coal Waste Pile Fire. Paper in Mine Drainage and Surface Mine Reclamation. BuMines IC 9184, 1988, pp. 337-342.

18. Justin, T. R., and A. G. Kim. Mine Fire Diagnostics To Locate and Monitor Abandoned Mine Fires. Paper in Mine Drainage and Surface Mine Reclamation. BuMines IC 9184, 1988, pp. 348-355.

19. McCaffrey, B. J., and G. A. Heskested. A Robust Bidirectional Low-Velocity Probe for Flame and Fire Applications. Combust. and Flame, v. 26, 1976, pp. 125-127.

APPENDIX A.--FAN ASSEMBLY DESCRIPTION

Figure A-1 is a line drawing of the test fan assembly and the flexible duct and rigid piping (detail A) containing the "test section," situated between the borehole and the fan. The test fan (combustion air type, for use in exhaust mode) was rated at 2,920 cfm at a differential pressure of 34.7 in H₂O at 70° F (21° C) and had a wheel and shaft fabricated of AISI Type 316 stainless steel to withstand temperatures to 600° F (316° C). Its 25-hp motor was powered from a separate, propane-fueled generator set. The test fan's original sled was made as a drainable water tank that could be filled to lower the center of mass to increase stability. This configuration was difficult to tow and was not needed for stability in actual field use. The original fan was placed on another sled built from approximately 10-in-diam tube skids (not shown in figure A-1); the generator set also was placed on a similarly constructed tubular sled. Both sleds were pulled about the site with a small bulldozer. The fan was equipped with

Figure A-1.-Schematic of fan assembly including test section and connecting piping.

28

5

č,

a radial inlet damper, which was used during some flow simulation tests and was closed only at fan start to minimize load. An outlet silencer reduced noise levels, but both the fan and the generator assemblies were too noisy to stand near for more than a few minutes. A plastic blind flange, used when the fan was not operating, replaced a rain hood that proved to be too heavy to be on top of the silencer. At the inlet, a Y-section was installed ahead of the damper to provide dilution or balance air, if necessary. A butterfly valve controlled flow through the screened opening of the branch. Normally, the branch was sealed with a gasket and a blind flange.

A nominal 8-in-diam, 10-ft-long steel test section, supported on two sawhorses about 3 ft high, was connected at one end to the fan with a reducer (8 by 12 in) and at the other end to a 90° elbow to be attached to the 8-in-diam borehole casing. The 3- to 5-ft-long connections were made with flexible, reinforced, vinyl-coated nylon duct. The test section had a removable bidirectional flow probe $(19)^1$ centered in the pipe plus a port near each end for installing a type-K thermocouple. The elbow was fitted with a removable metal screen between it and the casing (to prevent large solids entrained in the airstream from entering the test section), a pressure-gas sampling port, and a second port to which could be attached a tube extending to the bottom of the casing for other pressure measurements.

¹Italic numbers in parentheses refer to items in the list of references preceding this appendix.

APPENDIX B.-LOTUS 1-2-3 SPREADSHEET TABULATIONS OF RESULTS FOR TWO BOREHOLE COMMUNICATIONS TEST PERIODS

Computerized spreadsheets are shown in figures B-1 through B-8. The symbols in the last column of each tabulation are explained below.

KEY TO FIGURES B-I THROUGH B-8

Fire signature Cold area Final value С + Present Н Hot area Not present Uncertain or mixed () During suction signals Increasing Suction hole Ж Decreasing Good communication) Same level Poor communication

SUMMARY CONCLUSION	0	0	0	€	(<u>;</u>)	€	Ø	Ð	€	0		€	⊛	0			
PPM AFCO:	4093 6140 0	188	£ 15 88 85	15 713 3707 5078	115 211 245	1065 1532 3704	1688 861 895 0	207 1394 3611	263 2614 6462	288 2.2 2988 2.2	2969 121 0	0 2919 1251	69 8140 7140 7287 7287 7282 7282 7282 7282 7282 728	161 190 57	648 648	528 375 546 418	
JTR:	88. 9999	0.644 0.727 0.876	0.658 0.706 0.857 0.857	0.618 0.803 0.918 0.972	0.351 0.316 0.342	0.727 0.639 0.534	0.729 1.671 8.076 -13.333	0.630 1.727 2.143	0.597 1.952 1.898	0.607 1.122 5.732	0.703 1.306 1.598 1.741	138.869 -1, 795 -26, 430 -295, 441	0.741 0.558 0.558 0.3330 0.3333 0.3333 0.258 0.3333 0.252 0.3333 0.252 0.252	1,099 1.510 1.741 1.361	0.657 0.982 1.388	0.638 0.889 1.056 0.993	
CD/C02:	0.0200 0.0300 0.0000	0.0001 0.0002 0.0021	0.0005 0.0010 0.0018 0.0018	0.0001 0.0042 0.0200 0.0267	0.0014 0.0016 0.0009	0.0067 0.0109 0.0314	0.0107 0.0037 0.0030	0.0015 0.0067 0.0158	0.0020 0.0115 0.0309	0.0005	0.0194 0.0005 0.0000 0.0000	0.0000 0.0000 0.0117 0.0117	0.0000 0.0000 0.0150 0.0150 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700	0.0000 0.0006 0.0007 0.0007	0.0003 0.0003 0.0003	0.0037	
2C5/CH4:	0.000 0.000 Erre	0.000 0.000 0.000	0.00000	0.000 0.136 0.264 0.153	0.000 0.000 0.000	0.230	0.245 0.150 ERR 0.900	0.226 0.143 0.220	0.000 0.000 0.133	0, 040 0, 000 ERR	0.059 0.000 ERR ERR	0,000 1000 1000	0.050 0.0950 0.0000 0.0000 0.0000 0.000000	r r r r r r r r r r r r r r r r r r r	0.055 0.000 0.000	0.067 0.000 677	
PPM CSH12: C	000	000	0000	1000	000	ው CD ው	0000	*00	000	000	0000	0000	000000000	0000	000	0000	
PPM C4H10: 7	000	000	0000	កសក្កដំ	000	288	9000 9	r00	000	000	0000	0000	000000000	0 00 0	000	0000	
PPM C3H6:	000	000	0000	0441	000	4104	¥000	moo	000	000	0000	0000	000000000	0000	000	0000	
РРМ СЭНВ:	000	•••	00 00	0 <u>0 6 0</u>	000	ହ ଳ ଝ	00 H 0 0	or + o S	004	000	4000	0004		0000	400	+000	
РРМ С2Н4:	000	000	0000	ouvņ	000	ъrё	#00 0	000	000	000	0000	0000	000000000	0000	000	0000	
PPM C2H6:	000	000	4000	45 115 175	000	155 110 95	វ ខ្លួន០០	0 4 t 1 7	000	400	N 0 0 0	0001	ч <i>ы</i> рооооо	0000	NOO	m000	
PCT CH4:	0, 0005 0, 0005 0, 0000	0.0003 0.0003 0.0002	0.0025 0.0020 0.0015 0.0015	0.0015 0.0485 0.0655 0.1800	0.0010 0.0010 0.0010	0.1000 0.0585 0.0495	0.1000 0.0040 0.0000	0.0470 0.0035 0.0100	0.0015 0.0010 0.0030	0.0025 0.0005 0.0000	0.0135 0.0010 0.0000 0.0000	0.0008 0.0007 0.0007 0.0007	0.0000 0.0000 0.0000 0.0005 0.0005 0.0005 0.0005 0.0005	0.0000 0.0000 0.0000	0.0055 0.0010 0.0005	0.0060 0.0010 0.0007 0.0000	
007 PCT CD:	0.0010 0.0015 0.0000	0.0005 0.0010 0.0005	0.0050 0.0080 0.0115 0.0085	0-0010 0.0325 0.1200 0.1200	0.0025 0.0025 0.0015	0.1040 0.1020 0.1600	0.1100 0.0035 0.0015 0.0000	0.0205 0.0040 0.0095	0.0105 0.0075 0.0170	0.0060 0.0020 0.0000	0.2700 0.0020 0.0000	0.0000 0.0000 0.0035 0.0035	0.0015 0.0510 0.0515 0.0015 0.0015 0.0035 0.0035 0.0035 0.0035	0.0000 0.0015 0.0015 0.0005	0.0010 0.0010 0.0010	0.0430 0.0035 0.0030 0.0015	
PCT AT	78.12 78.12 78.12	80.40 79.60 76.80	82.30 80.90 79.10 79.00	82.70 79.80 78.20	80.90 81.00 90.70	82.80 82.40 81.80	81.30 78.00 77.97 78.00	84.70 78.11 78.05	81.10 78.06 78.10	83.90 78.27 78.12	82.90 77.60 77.60	78.07 78.07 78.07 78.07 78.07	79.20 28.120	78.27 77.70 77.90	82.60 78.40 77.70	83.50 78.50 78.30	
6CT 7	20.90 20.90	13.70 14.90 16.20	6.90 10.10 13.60 14.00	7.20 11.40 15.30 16.00	16.30 16.40	0.50 7.00 11.90	7.30 20.10 20.60 20.70	0.20 20.35 20.40	12.60 20.35 20.40	4.10 20.25 20.65	1.90 17.50 19.00 19.30	20.70 20.80 20.70 20.70	本 1 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	20.15 19.00 19.30 19.30	5.90 16.70 18.50	8.80 19.00 20.20 20.20	
RHOLE = 4 PCT CO2:	0.05 0.05 0.05	4.90 4.50	9.80 6.30 6.00	9.10 7.80 4.50	1.80 1.60	15.50 9.40 5.10	10.30 0.95 0.40	14.00 0.60 0.60	5,30 0,65 0,55	11.00 0.55 0.30	13.90 4.00 2.20 2.20	8888 8888	щщооооооо 68801888000 888088888888888888888888888	2.40 2.40 2.20 2.20	10.50 2.90 2.90	11.60 1.60 0.55 0.55	
PCT BOF	0. 0000 0. 0000 0. 0000	0,0000 0,0000 0,0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	8.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	00000000000000000000000000000000000000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	
INH20 PRES:	-0.004 -0.014 0.000	-0.015 -0.056 -0.041	0.027 -0.125 -0.113	0.000 -0.340 -0.215	-0.000 -0.001	0.000 -0.126 -0.120	0.016 -0.104 -0.087 -0.100	0.020 -0.155 -0.133	0.027 -0.212 -0.195	0.019 -0.500 0.000	0.040 -0.178 -0.150 -0.131	0.000 -0.440 -0.420 -0.420	0,023 -21,000 -24,400 -24,700 -24,700 -24,200 -22,400 -21,800	-0.002 -0.101 -0.088	0.022	0,035 -0,100 -0.085 -0.085	
4243) 066C TEMP:	16.1 15.0 15.6	17.1 17.8 17.6	26.9 56.9 56.7	4.99.99 4.99.99 4.99.99	4.4 e 8 8 8	76.1 77.8 77.6	69.3 68.1 66.3 66.7	69.6 62.0 59.2	62.4 63.0 62.7	62.4 61.6 61.1	93.8 94.2 94.2 92.12	23.5 82.4 82.4	88842349 88842349 89542349 8954423 8954423 89544 89544 89544 89544 8954 8954 8954	35.1 35.1 35.1	62.7 62.1 60.0	60.1 59.4 58.54	
ENTON (JE TIME:	931 1237 1421	926 1232 1417	915 1214 1406 1458	816 1054 1308 140	821 1100 1315	628 1105 1321	837 1116 1325 1443	841 1121 1330	912 1127 1401	908 1136 1357	901 1141 1346 1451	847 1148 1335 1505	851 944 1012 1047 1154 1304 1304 1345 1305	856 1159 1341 1447	905 1205 1352	921 1221 1412 1454	
Nine Fire R BH:	16 15	1181 118 118 118	444 <u>4</u>	<u> </u>	<u> </u>	9 9 9 9 9 9 9 9 9 9	66 66 66 66 66 66	88 88 8	8 8 8	66 6	4444	4444	4444444 44444444444444444444444444444	1111	ឌនេង	និនិនិនិ	

;

1

ŧ

Figure B-1.--Borehole communications test data, JD4243.

31

															1	. ,	
SUMMARY CONCLUSION	(6)	0	\triangleleft	∢	(<u>ō</u>)	€	Ø	Ð	0	0		⊛	${\bf A}$	٥	۵		
PPN AFC0:	0000	8000	99 607 716 891	0 2666 6149 6508	0000	467 2979 6487 7428	3534 1652 1193 1193	528 4385 6278 7046	131 317 2231 2574	58 250 250 250	2445 269 115 124	1000 1000 8187 48187	11 1712 3364 4257	8000 N	4000	ង្ហ័ង _០	
JTR:	-0.252 -0.252 -0.252	0, 778 0, 761 0, 778 0, 824	0.694 0.686 0.719 0.755	0.703 0.865 0.956	0,381 0.394 0.418 0.438	0.768 0.668 0.594	0.731 1.874 13.828 12.678	0.638 1.174 1.251 1.255	0.633 1.036 1.928 1.781	0.627 978-0 3.629 -71.493	212.0 278.0 278.0 213.0	0, 754 0, 252 0, 252 0, 252 0, 252 0, 252 0, 252 0, 252 0, 952	0.692 0.886 0.843 0.977	0.816 1.067 1.859 2.467	0.701 0.737 0.840 0.926	0.699 0.694 0.816 0.384	
CD/C02:	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0006 0.0040 0.0046 0.0055	0.0000 0.0149 0.0327 0.0333	0.0000 0.0000 0.0000 0.0000	0.0028 0.0205 0.0511 0.0581	0.0226 0.0063 0.0033	0.0037 0.0232 0.0335 0.0376	0.0009 0.0017 0.0089 0.0114	0.0004 0.0004 0.0009 0.0012	0.0157 0.0017 0.0006 0.0007	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0001 0.0094 0.0193 0.0220	0.000 0.0000 0.0000 0.0000	5000 °0 5000 °0 5000 °0	0.0029 0.0008 0.0002	
C5/CH4:	0.000 0.000 0.000	0.000 0.000 ERR	0.033 0.164 0.200	0.000 0.145 0.215 0.215	0.0000000000000000000000000000000000000	0.216 0.227 0.291 0.305	0.245 0.114 0.000 0.000	0.220 0.170 0.190 0.197	00000	0.0000000000000000000000000000000000000	0.169 0.044 0.000	0.040 ERR ERR ERR ERR ERR ERR 0.1340	0.050 0.156 0.185 0.107		000 000 000 000 000 000 000 000 000 00	0.120 0.050 0.000	
РРМ С5Н12: C2	0000	0000	0000	0871	0000	ក្តស្តុក	0000	m000	0000	0000	0000	00000000	0000	0000	0000	0000	
PPM 34410: XI	0000	0000	0000	ဝအမှုစ္စ	0000	1998	Nooo	01 (N 14 10)	0000	0000	0400	0000000	0000	0000	0000	0000	
PPM 3H6: ×0	0000	0000	0000	0460	0000	וי די די	nooo	NOHH	0000	0000	0000	00000000	0000	0000	0000	0000	
PPM HB:	0000	0000	0 M M M	စ္ရာဂ္ကစ္မွ	0000	93 7 44 93 7 44 93 7 44	8400 8400	14 I 28	0000	0000	N400	၀၀၀၀၀၀၀၀	0004	0000	0000	4000	
PPH 2H4:	0000	0000	0000	S ^{2, a o}	0000	ដ~ដដ	ររុ០០០	₩₩ ₩	0000	0000	N000	00000004	0000	0000	0000	0000	
PPM CZH6: C	0000	0000	+ 00 A	22450 22450 22450 22450	0000	210 93 108 120	121 26 0 0	0 8 6 8	0000	0000	r MHO	40000000	-0922	0000	4000	ທາດເວ	
PCT CH4:	0.0003 0.0003 0.0003 0.0003	0.0000 0.0003 0.0002 0.0002	0.0030 0.0055 0.0040 0.0035	0.0010 0.0600 0.1600 0.1600	0,0010 0,0008 0,0007 0,0007	0.1400 0.0630 0.0580 0.0580	0.0825 0.0035 0.0010 0.0010	0.0650 0.0165 0.0310 0.0370	0.0015 0.0008 0.0006 0.0006	0, 0025 0, 0003 0, 0003	0.0065 0.0090 0.0065 0.0065	0,0025 0,00000 0,00000 0,0000 0,0000 0,00000 0,000000	0.0020 0.0045 0.0065 0.0065	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0030 0.0010 0.0005 0.0005	0.0050 0.0040 0.0015 0.0015	
52 PCT CD:	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0060 0.0390 0.0415 0.0470	0.0000 0.0910 0.1600 0.1600	0.0000	0.0465 0.1500 0.2400 0.2500	0.2100 0.0075 0.0020 0.0020	0.0525 0.0220 0.0285 0.0320	0.0115 0.0025 0.0080 0.0080	0.0045 0.0005 0.0003 0.0003	0.2200 0.0140 0.0035 0.0030	0.0000 0.00000 0.00000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0010 0.0470 0.1100 0.0945	0,0000 0.0000 0.0000 0.0015	0.000 0.0000 0.0000 0.0000	0.03 45 0.0090 0.0015 0.0000	
N ON AT 9 PCT N2: N2:	78.12 78.12 78.12 78.12	79.30 79.40 79.30	81.50 81.80 81.10 80.50	80.40 79.00 78.30 78.10	81.60 81.30 80.90 80.70	82.10 81.10 80.80 80.50	80.90 77.90 77.90	84.60 78.20 78.10 78.10	84.00 78.30 78.00 78.00	83.90 78.50 78.10 78.10	82.70 80.00 78.60	79.50 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12	63.30 78.80 79.10 78.40	79.00 78.20 77.50	81.80 79.90 79.00	82.20 29.20 20.20 20.20	
12 PCT 22: 22:	20.98 20.98 20.98	15.10 15.00 15.10	9.900 9.000 9.000 9.000 9.000 9.000 9.00000 9.00000 9.0000 9.00000 9.00000000	12.20 13.80 15.50 15.80 15.80	14.80 15.20 15.30 15.90	0.10 10.40 10.40 10.40	8-50 20,60 20,60	0.10 20.00 20.00	2.50 20.20 20.30	3,10 20,60 20,70	2,10 10,80 15,90	20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90	1.40 15.20 14.10 16.30	16.40 18.10 19.30	6.70 13.70 15.70	4.50 5.95 5.90 5.90 5.90 5.90 5.90 5.90 5	
EHOLE = + PCT CO2:	0.05 0.05 0.05	4 4 4 4 8 6 6 6	9-30 9-10 9-10 9-10	6.10 6.10 6.10 6.10 8.00 8.00 8.00	20244 80244	16.60 7.30 4.70	9.30 1.20 0.55 0.55	14.20 0.95 0.85 0.85	12.50 1.50 0.90 0.70	51-00 54-00 88-00 88-00 88-00	14.00 8.20 4.50	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88880 7588 7578	10.50 5.80 4.40	12.10 9.20 8.30	
HAUST BOR PCT H2:	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0,0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0,0000	0.0000 0.0000 0.0000	0, 0000 0, 0000 0, 0000 0, 0000	0.0000 0.0000 0.0000	0,0000 0,00000 0,00000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,000000	0.0000 0.0000 0.0000	0,0000 0,0000 0,0000 0,0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	
INH20 PRES:	0.003 00000000	0.000 -0.024 -0.028	0.013 -0.024 -0.025	-0.018 -0.205 -0.210	0.000 0.000 0.000 0.000	0.015 -0.105 -0.150	0.022 -0.070 -0.065	0.010 -0.135 -0.129	0.015 -0.132 -0.129 -0.128	0.013 -0.133 -0.125 -0.137	0.045 -0.034 -0.030	-29, 900 -29, 200 -29, 200 -20, 000 -29, 500 -29, 500 -29, 500 -29, 500 -29, 500	0.000 -0.218 -0.235	-0.0045 -0.045 -0.050	0.029 -0.042 -0.020	0.033 -0.004 -0.016	
4249) DEGC TEMP:	15.7 15.7 15.0 15.7	16.9 17.1 17.4 18.1	56.6 56.9 58.1 57.8	0 n -1 n n n - 5 n - 5	22.7 22.9 23.0 23.5	77.1 76.2 77.4 76.5	72.6 70.2 69.3	68.3 60.2 59.0 58.2	62.9 62.3 64.0 63.0	61.2 62.0 62.0 62.0	8.52 93.89 96.7 96.5	966 966 966 966 966 966 967 967 96 96 96 96 96 96 96 96 96 96 96 96 96	60.2 56.9 60.0	37.0 35.9 37.6 37.4	61.3 62.0 62.3 62.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ENTON (JD	920 1104 1309 1428	917 1101 1307 1425	913 1055 1303 1420	927 1120 1318 1439	926 1119 1317 1437	924 1117 1315 1315	922 1115 1313 1431	929 1122 1321 142	911 1053 1301 1417	909 1051 1257 1415	906 1047 1241 1412	856 1003 1135 1135 1135 1332 1449	902 1041 1233 1406	904 1045 1237 1409	908 1049 1255 1413	914 1058 1305 1422	
Mine Fire Ri BH: 1	16 16 16 16	81881	61 61 61	<u> </u>	8888	****	939 33	****	****	9 9999	4444	4444444 444444	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4444 4444	88888 8	និតិសិត្តិ	

*)

Figure B-2.—Borehole communications test data, JD4249.

32

Ţ

,

i X

, units of the

1

1

ij

SUMMARY SUMMARY	٢	0	€		0	\square		æ	0	0	Ð		\blacksquare	0		
PPH AFCO:	0000	0008	17294 1295 1595 1883	5792 5880 9880 9368	0000	914 1191 1588 2002	2736 1828 0	512 2552 5524 5587 7587 7587 9452 9639 9639	163 123 161	85°00	3595 743 863 2151	73 697 2087 4170	46 8788 9405	លួ០០០	8000	720 248 270 172
JTR:	0.252	0.840 0.802 0.817 0.817	767 0.753 0.735 0.735	0.650 1.331 2.083 1.934	0.552 0.565 0.615 0.636	0.772 1.038 1.289	0.704 6.980 -0.675	0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863	0.576 0.930 1.078 1.419	0.622 0.874 1.548 -85.714	0.753 0.788 0.825 0.825 0.787	0.734 6.420 20.112 -11.792	0.702 0.908 0.877 0.968	0.746 1.020 1.582 2.441	0.696 0.758 0.861 1.014	0.724 0.722 0.804
C0/C02:	0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000	0.1115 0.0083 0.0100 0.0115	0.0000 0.0250 0.0347 0.0362	0.0000	0.0055 0.0060 0.0073	0.01B0 0.0054 0.0000	0.0038 0.0160 0.0160 0.0442 0.0442 0.0553 0.0553 0.0553	0.0013 0.0005 0.0007 0.0008	0.0006 0.0011 0.0000	0.0222 0.0044 0.0050 0.0130	0.0005 0.0020 0.0075 0.0143	0.0003 0.0218 0.0494 0.0493	0.0002 0.0000 0.0000	0.0000	0.0045 0.0016 0.0014
205/0H4:	0.00000	o Ser and Ser	0.044	0.000 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.000 0.036 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000000000000000000000000000000000000	0.251 0.133 0.182 0.182	0.204 0.000 ERR 0.000	0.255 0.155 0.155 0.155 0.143 0.126 0.126 0.126	0.0000000000000000000000000000000000000	0.000 0.000 0.000 0.000	0.060 0.058 0.053 0.053	0.100 0.000 0.000	0.018 0.140 0.122 0.112	ERR BRR BRR	0.075 0.018 0.0255	0.078 0.072 0.050
PPM 15412: C	0000	0000	0000	0000	0000	¤ ⊣00	4000	N00N2411	0000	0000	0000	0000	0000	0000	0000	0000
РМ #H10: xf	0000	0000	ommm	0000	0000	2010	0000	84°811288	0000	0000	0000	<u></u>	0 11 11 10	0000	0000	0100
۴ų ۴ų	0000	0000	0 1 1 1	0000	0000	1110	4000	៷៰៰៰៓៷៓៸៸៓ដ៓ដី	0000	0000	0000	0000	0000	0000	0000	0000
កក្ត	0000	0000	-1 40 60 h-	0 N N M	0000	N N N N N H	ncoo	6188888 8	0000	4000	៣៣៧៧	mooo	- 4 - E	0000	000	m N H O
PP -	0000	••••	0000	0000	0000	7000	N000	4 ¹⁰ 이 인 인 원 원 년	0000	0000	4000	m 0 0 0	0 H N N	0000	0000	m N N O
E H		0000	1000	ONNN	0000	הסממ	0000	0000000000	NOOD	N000	4.400	иeoo	លប្រសា	0000	nueo	00 00 4 (V
PPH C2H6:	0000	0010		™N m m		# 1	a	7°378888888			जन ल	1	(SID) AF			
PCT CH4:	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000	0.0045 0.0155 0.0155 0.0130	0.0015 0.0730 0.0950 0.0950	0.0005 0.0005 0.0005	0.2200 0.0165 0.0055 0.0040	0.0680 0.0015 0.0000 0.0010	0.0800 0.0415 0.0415 0.2400 0.2400 0.2200 0.2200 0.3200	0.0040 0.0010 0.0010 0.0010	0.0070 0.0090 0.0005 0.0005	0.0300 0.0240 0.0190 0.0220	0.0210 0.0010 0.0010 0.0010	0.0220 0.0250 0.0520	0.0000	0.0080 0.0055 0.0040 0.0040	0.0180 0.0195 0.0140 0.0140
1001 PCT CD:	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.9700 0.0875 0.1100 0.1200	0.0000 0.0650 0.0590 0.0590	0.0000 0.0000 0.0000	0.0910 0.0145 0.0110 0.0110	0.1600 0.0035 0.0000 0.0000	0.0510 0.1200 0.1200 0.2300 0.2300 0.2500 0.2600 0.2600	0.0140 0.0005 0.0005 0.0005	0.0065 0.0015 0.0000	0.9275 0.0275 0.0245 0.0245	0.0045 0.0015 0.0030 0.0050	0.0040 0.1200 0.3300	0,0000 0,0000 0,0000	0,0055 0,0003 0,0000	0.0500 0.0135 0.02000
N ON AT 1 PCT AT 1 N2:	78.12 78.12 78.12 78.12	79.00 79.20 79.10	81.10 81.60 81.40 80.90	80.60 77.75 77.75	79.80 79.60 79.30	81.90 78.20 78.00	81.20 77.90 78.10 78.12	85.40 80.30 79.00 78.70 78.40 78.40 78.40 78.40 78.40 78.40	84.80 78.40 78.30 78.30	83.50 78.50 78.20	82.00 79.60 79.50	81.10 77.80 78.00 78.00	82.80 79.70 78.40	79.20 78.30 77.70 77.50	83.30 79.70 78.90 78.30	81.40 81.70 80.00
38 PCT FF 02:	20.90 20.90 20.90	15.70 15.50 15.70 16.00	9.20 6.50 7.60	12.90 18.60 19.70 19.90	16.80 17.20 17.60 18.00	0.10 18.40 19.50 19.80	8.70 20.55 20.85 20.85	0,10 13,41 14,60 15,20 15,50 15,50 15,50	3.00 19.70 20.30 20.30	4.60 19.20 20.40 20.70	2.30 15.00 13.50	8.00 20.50 20.65	2.70 14.70 10.70 13.60	16.70 18.20 19.20 19.80	7.70 13.60 15.80 17.10	6.40 8.10 10,00
CHOLE = # PCT CD2:	0.05 0.05 0.05 0.05	4,4,4 4,40 100 100 100	8.70 10.50 11.00	5.50 2.60 1.70	2.20 2.10 1.90	16.60 2.40 1.50 1.20	8.90 0.65 0.10	4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11.20 1.00 0.70 0.60	10.90 0.50 0.50 0.50	14.40 6.20 1.90 90 90	9,000 9,400 1,40	ta.50 5.50 6.70	82.22 1.22 1.82 1.82 1.82 1.82 1.82 1.82	10.00 5.70 Э.70 Э.70	11.20 10.70 9.70 9.00
HAUST BOR PCT H2:	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.1000 0.1000 0.1000 0.1000 0.1500 0.1500	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0,0000 0,0000 0,0000
NH2D EX	0.000 -0.011 -0.013	-0.059 -0.056 -0.055	0.026 -0.115 -0.104	-0,043 -0.860 -0.880 -0.880	0,000 0,000 0,000	0.015 -0.760 -0.760 -0.760	0.018 -0.480 -0.480	0.018 23.500 23.500 23.500 23.500 23.500 23.900 23.900	0.032 -0.260 -0.278	0.022 -0.138 -0.139 -0.139	0.054 -0.019 -0.020	-0.255 -0.255	0.013 -0.144 -0.147 -0.149	0.000 -0.041 -0.045	0.037 -0.056 -0.059	0.035 -0.024 -0.022
	16.2 15.3 17.1 16.0	17.3 17.9 18.3 18.0	28.93 28.93 28.93	33.9 33.6 32.9	2.52 2.52 2.52 2.52	77.0 78.1 80.4 75.5	73.6 67.9 65.1 63.7	62.6 63.7 63.7 63.7 64.1 61.9 7	61.5 61.8 62.1 60.5	61.5 62.8 62.4 61.1	92.5 94.4 95.6 95.6	38.2 97.7 97.8 97.8	61.3 61.0 63.1 61.9	97.9 97.1 98.5 97.5	60.7 62.9 62.4 61.2	59.7 59.7 60.1
	952 11137 11306 11443	954 1135 1304 1448	947 1129 1259 1438	921 1108 1235 1407	923 1106 1237 1410	925 1110 1239 1412	927 1112 1241 1415	843 1030 1102 1141 1231 1313 1352 1503	930 1114 1243 1417	933 1116 1245 1419	937 1120 1250 1425	944 1127 1257 1432	941 1124 1254 1254	939 1122 1252 1430	936 1118 1248 1422	949 1132 1301 1441
Mine Fire REN BH: TI	11999 99999	81 67 67 69 61 67 69 69 61 67 69 69	ត្តតត្	8888	8 8 8 8 8	ጽጽጽጽ	83 9 9 9 9 9	%%%%%%%%%% %	ភ្លូ <i>ត</i> ភ្លូ ភ្លូ ភ្លូ ភ្លូ ភ្លូ ភ្លូ	6 668	****	6898	ፚ፟ ቒ፟፟፟፟፟ፚ፟ፚ፟	1111	ទទួនទ	និតិតិតិ

.

Figure B-3.—Borehole communications test data, JD4251.

SUMMARY CONCLUSION	0	0	۵	Æ	(i)	ightarrow igh	Ŧ	÷	۵	\mathbb{A}	۵	Ø	0	0	\%	Ø
PPM AFCO:	00 00	0000	117 84 506 506	0 0 5252 5252	0006	0 2142 5560 6730	2067 1960 4184 4741 4881	732 1130 4086 4707	171 144 417 521	46 107 5512 5108	2721 530 110 190	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0 1530 2089 3207	00000	66 1227 1227 4655 5437 5621 5621 7044 7171	1955 78 78
JTR:		0.698 0.766 0.977 1.017	0.706 0.783 1.083 1.020	0.585 0.685 0.947	0.865 0.888 0.720	-0.252 0.717 0.705	0.701 1.105 1.777 1.772 1.729	0.612 0.863 0.758 0.734	0.614 0.941 -4.157	0.643 0.821 1.112 2.262 2.078	0.691 1.380 2.108 3.287 2.593	0.699 1.041 2.234 4.526	0.695 1.746 2.417 4.192 1.629	0.780 1.208 2.321 4.147 6.838	0,735 0.957 1.041 1.173 1.041 1.173 1.045 1.045	0.721 0.962 1.277 1.558
CD/C02:	000000000000000000000000000000000000000	000000	0.001 0.001 0.002 0.002	0.000 0.000 0.027	0.000 0.000 0.000 0.000	0.000 0.014 0.037 0.046	0.014 0.017 0.017 0.021	0.005 0.025 0.025	0,001 0,001 0,002 0,002	- 000 0.001 0.023	0.0018 0.000 0.000 0.000	200. 200. 200. 200. 200.	0.000 0.001 0.005 0.008	000000000000000000000000000000000000000	0.027 0.027 0.027 0.023 0.035 0.035	0,003 0,001 0,000
CS/CH4:	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ERR Err Fr	0,086 0.044 0.053	0,025 0,058 0,058	000000	0.000 0.212 0.182 0.172	0.102 0.136 0.136 0.130 0.104	0.250 0.156 0.193 0.211	0.120 588 0.000	0.000 0.057 0.057 0.036	0.128 0.067 0.000 0.000 ERR	00000000000000000000000000000000000000	0.025 0.000 0.000 0.000	ERR ERR ERR ERR	0,060 0.110 0.110 0.128 0.128 0.128 0.125 0.086	0.122 0.000 0.000
PPM CSH12: C2	0000	0000	0000	0004	0000	0444	00000	20N7	0000	00000	00000	00000	00000	00000	00000000	0000
Ррм 14410: х(0000	0000	0000	0004	0000	០ពីជីពី	00000	1000	0000	00000	00000	00000	00000	00000	O N N M N 4 4 4	N000
РРМ ЗНБ: хС	0000	0000	0000	0004	0000	0004	N0000	4000	0000	00000	00000	00000	00000	00000	00044444	0000
Mer SH8:	0000	0000	नननन	0000	0000	២.೪.೩	Зимии	4~24	0000	00011	60000	00000	00000	00000	00004545	0000
SH4: C	0000	0000	0000	0000	0000	0 I Ö Ö	N0000	၈၀၈၀	0000	00000	40000	00000	00000	00000	00040444	0000
PPH 2H5:	0000	0000	0,0,4,4	708¥	0000	315 315 315	*2051	165 115 165 165	mooo	00N4M	14 N O O O	N0000	N0004	00000	888888888888	2000
PCT CH4:	6, 0000 0, 0000 0, 0000	0.0000 0.0000 0.0000	0.0035 0.0090 0.0095 0.0100	0.0040 0.0040 0.0600	0.0005 0.0005 0.0005	0.0005 0.2100 0.2100 0.2500	0.0520 0.0125 0.0115 0.0115 0.0115	0.0925 0.0250 0.0830 0.1100	0.00055 0.00005 0.0005	0.0025 0.0010 0.0035 0.0140 0.0065	0.0180 0.0030 0.0005 0.0005 0.0005	0.0100 0.0005 0.0005 0.0005	0.0080 0.0007 0.0007 0.0010 0.0025	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.0050 0.0125 0.0335 0.0460 0.0720 0.0720 0.0720	0.0230 0.0015 0.0005 0.0005
033 PCT CO:	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0065 0.0035 0.0100 0.0110	0.0000 0.0000 0.0300 0.0500	0.0000 0.0000 0.0000 0.0015	0.0000 0.1600 0.2600 0.3100	0.1100 0.0220 0.0170 0.0170 0.0175	0.0725 0.0170 0.0790 0.1000	0.0150 0.0010 0.0005 0.0005	0.0035 0.0010 0.0000 0.0145 0.0110	0.2500 0.0100 0.0005 0.0005	0.0020 0.0005 0.0010 0.0010	0.0000 0.0010 0.0035 0.0040 0.0115	0.0000 0.0000 0.0000 0.0000	0.0040 0.0735 0.1700 0.1700 0.1700 0.1900 0.1900	0.0360 0.0020 0.0005
N ON AT 1 PCT N2:	78.12 78.12 78.12 78.12	79.80 78.40 78.30	81.10 79.80 78.00 78.20	81.40 79.90 78.70 78.40	78.50 78.50 78.30	78.12 81.70 80.60 80.30	81.00 78.10 78.00 78.00 78.00	85.00 78.60 79.00	84, 30 78, 40 78, 10 78, 12	83.10 78.60 78.30 78.00 78.10	83.40 77.30 77.90 79.00	81.90 78.30 78.12 78.07 78.07	82.80 77.80 78.00 78.00 78.00	79.10 77.80 77.80 77.80	81-00 28-00 28-00 29-00 29-00 29-00 29-00 29-00 29-00 29-00 20-000	81.80 78.40 78.10 78.00
58 F.A PCT F.A 02:	20,90 20,90 20,90 20,90	14.70 15.40 17.80	9.30 12.20 16.60 16.40	12.00 14.60 16.30	18,40 19,00 19,20	20.90 5.30 11.30	9,80 20,10 20,20 20,20	0.20 17.80 16.90 16.50	20.20 20.70	4.90 20.30 20.30 20.40 20.50	20.90 20.90 20.90 20.90 20.90 20.90	6.40 20.50 20.50 20.50 20.50	3.10 20.40 20.55	16.60 18.60 20.10 20.50	8.30 13.10 15.10 15.10 15.10	5.70 18.80 19.60 19.90
040LE = #1 PCT 002:	0.05 0.05 0.05	4.4 m w 9 0 0 0 0	60 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1, 200 100 100 100 100 100 100 100 100 100	2.10 1.60 1.50	0.05 11.60 7.50 6.80	8.10 0.80 0.80 0.80 0.80	13.50 9.50 9.20 9.20 9.20 9.20 9.20 9.20 9.20 10 10 10 10 10 10 10 10 10 10 10 10 10	12.10	11.00 0.50 0.60 0.460	13.90 4.80 0.80 0.80 0.80	0.1-0-0-0 0.1-0-0-0 25-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	13.10 1.60 0.65 0.50 0.50	3.40 2.50 0.90 0.90 0.90	997,979,999,99 799,149,864,99	11.50 1.90 1.20
HUST BOR	0.0000	0.0000 0.0000 0.0000	0,0000 0,0000 0,0000 0,0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0,0000000000000000000000000000000000000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.1000 0.1500 0.1500	0.0000 0.00000 0.00000
INH20 PRES:	0.000 -0.015 -0.015	-0.003 -0.063 -0.057	0.025 -0.143 -0.128	-1.320 -0.940 -0.115 -0.111	0.000 0.002 0.002	0.033 -0.060 -0.058	0.039 -0.041 -0.043 -0.037	0.018 -0.071 -0.055	0.030 -0.105 -0.105	0.023 -0.255 -0.255 -0.258	0.052 -0.243 -0.239 -0.239		0.014 0.250 0.250 0.234 0.233	0.001 -0.151 -0.151 -0.151 -0.145	0,042 24,500 -24,600 -24,600 -24,600 -24,600 -24,600	0,027 -0.265 -0.250 -0.245
1256) 1256) 1276)	17.2 16.9 18.1	18.1 18.0 19.0 19.0	57.4 58.4 58.0	33.8 34.1 34.5	8.0 25.0 25.3 25.3	79.1 80.1 80.2 80.5	76.1 75.5 74.3 73.9	69.2 65.6 63.3 63.2	62.0 63.7 62.7	60.6 51.9 50.1 50.1	666888 4.158888 4.1240-08	96.99 99.99 9.99 9.99 9.99	565.4 56.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	38.2 39.4 39.5 37.9	50.2 50.1 50.2 50.2 50.2 50.1 50.1 50.2 50.1 50.2 50.1 50.2 50.1 50.2 50.1 50.2 50.2 50.1 50.2 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1	59.1 59.2 59.1
IME: T	1015 1142 1351 1507	1018 1151 1353 1353	1011 1134 1347 1503	1007 1125 1340 1458	841 1127 1338 1459	915 1130 1335 1500	1009 1132 1333 1507 1540	927 1123 1331 1456	1004 1121 1329 1453	953 1108 1320 1444 1533	956 1110 1316 1446 1543	1002 1118 1325 1452 1538	1000 1115 1324 1450 1536	958 1113 1322 1448 1535	932 1100 1217 1217 1402 1439 1515	1013 1137 1349 1505
Mine Fire RE BH: T	146 146 146	81 81 81 81 81 81 81 81 81	6 1 1 1 1 1	<u> </u>	មិ ងង ខ	8888	89999	<u>888888</u>	ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល	\$\$\$\$	44444	49494	66444	11111	88888888888888888888888888888888888888	និតិភិតិ

Figure B-4.--Borehole communications test data, JD4256.

34

HFT

ł

1

ł

j i

SUMMARY CONCLUSTON	0	0	0	<u>(</u>)	0	⊘		€	€		⊘	$\overline{\mathbb{A}}$	0	$\overline{\mathbb{A}}$	Ð
PPM AFC0:	328	96 870 1137	000	851 82	113 697 643	1602 1140 1193	70 1491 2685	21 122 1295 3780 4996 675	31 322 675	1242 184	173 895 190	304 8260 12141	900 900	000	44 C 11
JTR:	0.856 0.804 0.792	0.799 0.831 0.919	0.673 2.023 2.290	0.023 0.026 0.026	0.668 1.342 1.422	0.621 2.601 7.164	0.628 1.350 1.360	0,713 0,523 0,788 0,839 0,839 1,451	0.723 1.767 1.451	0.711 1.437	0.785 2.448 1.741	0.738 0.920 0.969	0.773 1.639 2.083	0.746 1.055 1.359	0.765 0.738 0.750
C0/C02:	0,001 ,000 ,000	0.001 0.005 0.006	0.000 0.000 0.000	0.015 0.020 0.015	0.001 0.004 0.003	0.012 0.004 0.004	0.001 0.013 0.022	0.000 0.001 0.008 0.008 0.0028 0.028	.000 000.00	0.00800.00	0.001 0.005 0.001	0.002 0.047 0.067	0.000	0.000.0	.000 .000 0.001
2C5/CH4:	0.000 ERR ERR	0.000 0.200 0.000	0.000	0.000 ERR 0.000	0.035 0.040 0.000	0.227 0.000 0.000	0.000 0.000 0.000	0.000 0.075 0.141 0.134 0.088	0.040 0.000 0.160	0.139 0.047	0.247 0.000 0.053	0.000 0.174 0.185	0.000 0.080 0.040	0.000 0.083 0.067	0.075 0.126 0.131
PPM xC5H12: C	000	000	000	000	000	000	000	000000	000	00	000	000	000	000	000
PPM C4H10:	000	000	000	000	moo	moo	400	000000	000	00	<u>~00</u>	олг	000	000	0 10 0
PPP 9HE:	000	000	000	000	000	000	000	000000	000	••	000	0110	000	000	000
РРН СЭНВ:	000	010	000	000	m 0 0	400	NOO	008479	000	ma	900 900	078 810	000	040	01-0
PPM C2H4c	000	000	000	000	000	000	000	000000	000	00	000	04-10	000	006	000
PPM C2H6:	000	ဝေးဂဝ	000	000	8,00	900	000	ດω№4880 0	400	ы Ю.4	804	130 0 130 0	0 11 4	040	ω M H
PCT CH4:	0.0000	0.0020 0.0035 0.0025	0.0005 0.0005 0.0005	0.0005 0.0000 0.0005	0.0735 0.0050 0.0030	0.0075 0.0010 0.0005	0.0165 0.0010 0.0015	0.0015 0.0040 0.0375 0.1300 0.1300	0.0025 0.0015 0.0075	0.0115	0.0450 0.0005 0.0075	0.0020 0.0650 0.0870	0.0010 0.0025 0.0025	0.0020 0.0060 0.0045	0.00400 0.0325 0.0130
040 PCT CO:	0.0015	0.0050 0.0550 0.0600	0.0000 0.0000	0.0015 0.0020 0.0015	0.0110 0.0025 0.0020	0.1250 0.0030 0.0020	0.0045 0.0025 0.0045	0.0015 0.0085 0.1200 0.1200 0.1300	0.0025 0.0010 0.0050	0.1100	0.015 0.0015 0.0015	0.0230 0.1400 0.2000	0.0015 0.0000 0.0000	0.0000 0.0000 0.0000	0.0035
PCT AT	78.70 78.90 78.90	80.00 80.10 79.00	78.80 78.20 79.10	81.60 81.30 81.30	83.90 78.20 78.20	83.60 78.00 78.00	82.00 78.30 78.30	81.50 73.75 73.75 73.75 73.75 73.75	82.10 78.10 77.50	82.70 77.50	81.70 78.20 77.60	81.70 78.40 78.30	79.20 77.60 77.60	81.30 78.10 77.40	81.50 80.00 79.00
139 PCT F1 02:	17.50 17.50	10.30 7.70 9.90	19.10 20.55 20.55	17.60 17.60 17.60	0.50 20.30 20.30	20.40 20.40 20.60	7.40 20.60 20.60	6.30 6.30 112.70 115.50 115.50	4-20 20.30 19.40	2.40	1.00 20.60 19.30	5.10 17.50 17.50	16.20 19.10 19.70	6.40 15.20 17.20	4.20 12.80 17.20
REHOLE = 1 PCT CD2:	2.70 2.70 2.70	9.70 11.20 10.10	1.20 0.35 0.45	0.10	14.50 0.70 0.60	10.80 0.70 0.50	9.00 0.20 0.20	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	12, 70 0, 70 1, 80	13.80 3.50	16.20 0.30 2.20	12.20 3.00 9.00	3.70 2.40 1.80	11.30 5.80 4.50	13.30 6.20 2.80
HAUST BOI PCT H2:															
INH2D PRES:	0.052	0.025 -0.023 -0.229	-0.019 -0.420 -0.450	0.010 0.075 -0.020	0.001 0.001 0.360	0.034 -0.320 -0.320	0.000 -0.420 -0.420	0.012 -28.700 -28.300 -28.300 -28.300	0.00 0.330 0.320	0.040	0.0 25 -0.320 -0.320	0.280 0.280 0.280	0.002 0.039 0.090	0.024 -0.150 -0.145	0.025
DSOSE) DESC TEMP:	18.0 16.5 16.9	56.2 54.5 54.5	15.0 13.7 14.5	14.4	60.2 58.0 58.2	76.6 70.9 70.1	42.5 31.0 29.9	844444 07.00000	54.6 50.1 49.2	69.6 75.1	61.9 62.3 62.0	47,6 46,6 48,6	50.5 47.1 46.6	58.1 55.6 55.2	56.2 54.4 54.6
TIME:	1006 1247 1426	1002 1243 1422	1014 1254 1432	1012 1252 1430	1010 1251 1429	1009 1249 1428	1017 1256 1433	959 1151 1239 1239 1420	1026 1308 1441	1024	1019 1257 1434	1020 1258 1435	1437	1025 1307 1439	1003 1245 1424
Mane Fare f BH:	0,00	51 51	888	***	***	É É É É É	***	******	đ đ đ	44	444	4 6 3	111	ងខ្លួនន	888 8

,

4.00 M

1

i

ŧ

Figure B-5.-Borehole communications test data, JD5058.

SUMMARY CONCLUSION	0	0	0	0	₽		÷	0	0		÷	Æ	\\$	Ð	\odot
PPM PPM	88 69 188	141 74 97	1169 256 292	103	366 584 1081	424 1318 2231	166 331 533	47 299 895	1600	2642 498 697	667 1241 1651	0 2791 3588	0 1618 5027 7302 7302 7704	316 316 233	108 140 661
JTR:	0, 730 0, 805 0, 964	0.942 0.761 0.780	0.915 0.924 0.963	0.028 0.028 0.031	0.632 0.733 0.704	0.645 0.856 0.878	0.653 0.671 0.660	0.643 1.216 13.819	0.846 1.305 3.285	0. 769 3. 254 9. 957	0.763 0.779 0.822	0.725 1.587 1.832	0.690 0.8114 0.9988 0.9988 0.9788 0.9788	0.866 1.127 1.503	0.699 1.357 2.981
CO/C02:	0.001 .000 0.001	100.0	0.007	0.015 0.020 0.015	600.0 \$00.0	0,003 0,009 0,016	0.001 0.002 0.004	000. 0.002 0.003	0.001 0.000 0.000	0.016 0.001 0.002	0.004 0.008 0.010	0.000	800.0 800.0 800.0 800.0 80.0 90.0 90.0 9	0,002 0,001 0,001	0.001
2C5/CH4:	0.000	0.029 0.029 0.029	E00'0	0.000 0.000 0.000	0.091 0.073 0.069	0.103 0.100 0.050	0.122 0.096 0.119	0.000 0.000 0.000	0.056 0.057 0.000	0.004	0.193 0.242 0.205	0.017 0.075 0.080	0.000 0.305 0.1905 0.193 0.153 0.153	0.030 0.033 0.080	0.054 0.000 0.000
PPM CSH12: C	000	000	000	000	000	000	000	000	000	000	111 <u>1</u>	000	0.04044	000	000
FPM C4H10:	000	000	000	000	0 00	400	000	000	NOO	m 0 0	50 S	000	ဝဂိုစာဗီဒိုဒို	000	000
PPM C3H6: x	000	000	000	000	000	000	000	000	000	400	1 3 04 0 4	000	ດທາກທຸກ	000	000
HPH MHB	000	000	000	000	4 01 H	640	ოოთ	000	10 o o	ဝ္ဝဝ	4 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 4 4	0.88885 0	0144	N00
PPM 2443	000	000	000	000	000	000	000	000	000	N00	SS 59 18	000	៰៷៷ឣ៷ឣ	000	000
РРМ ^с С2Н6: С	000	ONN	H00	000	20 20 8	ю́4 и	\$122 € 13 2 €	600	4100	ΰ σο	210 200 210	տտո	185 112 112 112 112	1.0n	900 100
PCT CH4:	0.0005 0.0005 0.0005	0.0020 0.0070 0.0070	0.0340 0.0080 0.0040	0.0005 0.0005 0.0005	0.1900 0.0300 0.0130	0.0320 0.0050 0.0040	0.0475 0.0240 0.0370	0.0340 0.0015 0.0005	0.0900 0.0035 0.0010	0.0650 0.0010 0.0005	0.1500 0.1300 0.1500	0.0300 0.0080 0.0075	0.0005 0.0870 0.0775 0.1000 0.1000	0.0430 0.0120 0.0075	0.0260 0.0030 0.0030
100 PCT C0:	0.0015 0.0010 0.0020	0.0050 0.0030 0.0040	0.0120 0.0030 0.0030	0.0015 0.0020 0.0015	0.0275 0.0085 0.0080	0.0240 0.0085 0.0080	0.0075 0.0045 0.0070	0.0025 0.0015 0.0015	0.0050 0.0000 0.0000	0.2100 0.0025 0.0015	0.0600 0.0400 0.0540	0.0000 0.0180 0.0180	0.0000000000000000000000000000000000000	0.0170 0.0060 0.0025	0.0060 0.0015 0.0030
N ON AT 1 PCT AT 1 M2:	79.10 78.80 78.40	79.60 79.90 79.80	78.40 78.40 78.40	81.00 81.00 80.80	83.00 78.90 78.60	81.80 78.40 78.40	81.00 79.00 79.00	81.60 78.20 77.90	79.60 78.10 77.90	81.30 77.30 77.70	81.80 79.40 79.10	81.80 77.80 77,80	22.000 25.000 25.000 25.000 2000 2000 20	79.50 77.90 77.60	79.20 77.80 77.50
44 PCT FA 02:	17.40 17.90 18.70	13.50 12.50 12.30	18.80 18.50 18.80	17.90 17.90 18.10	5.20 17.90 19.40	9.10 19.60 20.20	11.50 16.10 18.20	9.80 19.90 20.60	9.50 19.70 20.40	4.30 19.90 20.50	2.10 14.20 14.10	5.40 19.60 19.90	17. 9 17. 9 15. 5 15. 5	9.50 17.00 18.70	9.30 18.70 20.00
DREHOLE = # PCT CO2:	2.50 2.40 2.00 2.00	9.50 9.50 9.50	1.80 2.10	0.10 0.10 0.10	10.60 2.20 1.00	8.10 1.00 0.50	6.50 1.90 1.80	7.60 1.00 0.60	9.80 1.30 0.80	13, 10 1, 90 0, 90	14.90 5.30 5.60	11.80 1.60 1.30	9999994 9999994 9999999	10.00 2.80 2.80	10.50 2.60 1.60
XHAUST B PCT H2:															
INH20 PRES:	0.014 -0.032 -0.031	0.032 -0.065 -0.056	-0.034 -0.107 -0.106	0.030 0.015 -0.005	-0.004 -0.063	0.023 -0.032 -0.040	-0.015 -0.055 -0.063	0.012 -0.065 -0.067	0.015 -0.139 -0.136	0.030 -0.282 -0.260	0,012 -0,094 -0,084	0.000 -0.194 -0.175	-0.010 -25.700 -28.300 -28.300 -28.300	0.033 -0.210 -0.190	-0.218 -0.187
DEGC DEGC TEMP:	17.0 17.1 17.1	55.2 55.2 55.2	15.1 15.1 15.3	13.9 15.0 14.6	59.8 61.0 60.1	1.22.12	39.5 37.0 36.3	52.8 51.3 50.2	54,9 51,39	80.4 77.6 75.4	61.1 62.8 63.2	47.2 45.7 45.7	8449868 8449868 8449868	58.4 58.9 9	54.0 55.0 04.0
ENTON CU	904 1243 1425	857 1239 1421	918 1249 1430	914 1248 1429	911 1247 1428	908 1246 1427	922 1250 1432	854 1238 1420	851 1237 1418	845 1235 1415	924 1251 1433	927 1253 1434	841 1108 1232 1322 1413 1452	848 1236 1416	900 1241 1423
Mine Fire R BH:	81 81 81 81 81 81 81 81 81 81 81 81 81 8	51 19 19	និនន	អ្នអ	***	32 33 34	ញូញូញូ (ក្តី(ក្តី(ក្តី)	፝ ዾ፝ቑ፟፟፟	6 6 6	444	444	4 4 4 0 0 0	* ** * *	888 8	និនិនិ

.

Figure B-6.-Borehole communications test data, JD5059.

SUMMARY CONCLUSION	0		0	0	0	⊘	Ð	0	A		æ	0	Ø	⊛	
PPM AFCO:	381 299 3695	174 173 230	0 1596 3433	110 106 110	233 738 1287	433 1393 1790	179 1108 1969	40 1668 2079	234 1559 6049	2321 1193 166B	423 1588 2184	322 6976 14915	600	325 325 325 325 3290 3290 7265 7240	116 170 190
JTR.	1.416 1.750 2.026	0.861 1.039 1.288	0.845 0.785 0.866	0.031 0.029 0.031	0.660 1.004 1.119	0.636 2.559 4.172	0.649 1.083 1.087	0.613 -13.383 -1.943	0.712 1.042 1.062	0.719 38.331 -13.388	0. 768 0. 683 0. 707	0.738 1.463 -75.658	0.622 3.787 6.838	0.816 0.816 1.011 1.076 1.201	0.835 1.110 1.218
CD/C02:	0.002 0.001 0.001	0.001 0.001 0.001	0.000 0.010 0.020	0.015 0.015 0.015	0,005 0,005 0,008	0.003 0.006 0.008	0.001 0.006 0.011	.000 0.005 0.008	0.002 0.008 0.031	0.015 0.003 0.005	0.003 0.012 0.017	0.002 0.032 0.036	0.001 0.000 0.000	0.002 0.020 0.020 0.027 0.033	0.001 0.001 0.001
2CS/CH4:	0.000	0.067 0.062 0.050	0.000 0.012 0.015	0,000	0.053	0.161 0.000 0.000	0.079 0.100 0.106	0.020 0.000 0.000	0.050 0.061 0.117	0.161 0.000 0.000	0.222 0.097 0.096	0.031 0.039 0.036	0.094 ERR 0.000	0.058 0.169 0.157 0.157 0.153	0.081 0.000 0.000
PPM xC5H12; C	000	000	000	000	000	000	000	800	000	000	000	000	000	0 N H N M M	000
PPM xC4H10:	000	000	000	000	မဝဝ	m 0 0	NOO	000	000	မဝစ	9N0	000	000	0000000	000
Her SHE	000	000	000	000	000	000	000	000	000	000	000	000	000	0 H N N Ø Ø	000
нан ВНЕСС	000	000	000	000	۰oo	ဖဝဝ	4 4 4	000	++ (N **	900 1	N w M	0 11 11	оом	825558	NOO
PPM C2H4:	000	000	000	000	NOO	000	000	000	000	400	000	000	000	0077700	000
FPM 19H2	000	იოი	ဝက၊ဂ	000	1 29	စ္ဂစစ	а е 50	400	9 11 9 9 11 9	400	180 12	N100 47	ΰοο	182888 9	100 1
PCT CH4:	0.0015 0.0005 0.0005	0.0045 0.0065 0.0060	0.0030 0.0250 0.0340	0.0005 0.0005 0.0005	0.1600 0.0050 0.0040	0.01B0 0.0010 0.0010	0.0330 0.0070 0.0085	0.0050 0.0010 0.0005	0.0200 0.0230 0.0290	0.0380 0.0005 0.0005	0.1000 0.0175 0.0125	0.0160 0.0230 0.0140	0.0170 0.0000 0.0005	0.0225 0.0540 0.0500 0.0700 0.0800 0.0825	0.0160 0.0010 0.0010
1000 PCT CO:	0.0030 0.0015 0.0015	0.0070 0.0040 0.0040	0.0000 0.0240 0.0500	0.0015 0.0015 0.0015	0.0175 0.0030 0.0040	0.0245 0.0030 0.0030	0.0080 0.0045 0.0080	0.0020 0.0020 0.0015	0.0110 0.0175 0.0650	0.1800 0.0020 0.0020	0.0350 0.0110 0.0120	0.0230 0.0350 0.0250	0.0040 0.0000 0.0000	0.0150 0.0325 0.1000 0.1400 0.1400 0.1400	0.0060 0.0015 0.0015
PCT AT	77.90 09.77 09.77	79.20 78.20 77.60	78.60 78.80 78.60	80.80 80.90 80.80	82.60 78.30 78.30	81.90 78.10 78.10	81.00 78.30 78.30	81.70 78.00 78.10	80.60 78.20 78.20	82.00 77.80 78.00	81.50 78.60 78.50	81.50 78.00 77,70	81.00 77.70 77.80	79.70 78.20 77.90 77.70 77.70 77.70	79.70 78.20 78.10
58 PCT F 02:	19.30 19.90 20.10	12.50 16.10 17.30	18.70 17.80 17.90	18.10 18.00 18.10	5.20 20.10 20.30	9.10 20.50 20.60	11.60 20.10 20.10	10.40 20.70 20.80	11.10 18.60 18.70	4.70 20.60 20.70	3.60 19.50 19.80	6,00 19.90 20.60	12.30 20.30 20.50	11.30 11.60 15.70 15.80 16.80	10.10 19.10 19.30
REHOLE = PCT CO2:	1.90 1.30 1.10	7.30 4.80 4.20	1.80 2.50 2.50	0.10 0.10 0.10	11.00 0.65 0.50	8.00 0.50 0.40	6.40 0.70 0.70	6.90 0.40 0.20	7.30 2.20 2.10	12.10 0.65 0.40	65.00 05.00 05.00	11.50 1.10 0.70	5.70 1.10 0.80	8.00 8.00 9.00 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	9.20 1.80 1.70
XHRUST BO PCT H2:	0.0000	0.0000				0.0020	0.0000	0,0000		0.0130 0.0005 0.0005				0.0050 0.0220 0.0220 0.0250 0.0435	0.000
INH20 PRES:	0.000 0.000 0.000	0.033 -0.240 -0.240	-0.034 -0.185 -0.207	0.015 -0.024 -0.004	0.000 -0.140 -0.128	0.020 -0.105 -0.085	-0.015 -0.174 -0.160	0.009 -0.215 -0.212	0.013	0.400 -0.400 -0.400	0.018 -0.216 -0.213	0.007	-0.260 -0.260	0.028 -23.500 -25.2000 -25.2000 -20	0.040 -0.370 -0.370
D5060) DEGC TEMP:	17.2 17.0 16.9	55.0 54.8 54.80	15.3 15.3 15.3	14.2 15.1 14.9	59.9 50.2 53.6	73.0 74.7 73.6	40.0 33.6 32.3	53.1 46.0 44.1	54.8 49.7 48.4	73.5 73.5 72.4	61.8 65.0 64.7	46.8 44.4 43.9	52.5 47.4 46.7	2.0.1.0.7.1 2.0.1.0.7.1	54.5 53.4 53.0
renton (J. Time:	816 1234 1418	810 1230 1414	831 1241 1424	a27 1239 1423	824 1237 1421	822 1236 1420	833 1242 1425	807 1228 1412	804 1227 1411	845 1247 1430	837 1244 1426	839 1245 1428	842 1246 1429	758 1026 1124 1226 1410	813 1231 1416
Mine Fire F 8H:	18 18 18	ឡ ឡ ដ្ឋ	ន្តន្តន	***	ጽଳጽ	666	**	***	\$\$?	444	444	444	444	88888 8	និតិតំ

UNITED IN NO.

ч

Figure B-7.-Borehole communications test data, JD5060.

37

SUMMARY CONCLUSION	0	$\overline{\mathbb{A}}$	0	0	0	*	÷	Æ	Ŧ	<i>[</i> ĝ/			0	Þ	\blacksquare	
PPM AFCO:	158 214 198	0.08	15049	177 184 190	195 1857 2502	296 1728 1978 7617 8203 8203 8747	181 3896 9893	14 1485 3158	000	3018 146 121	281 1491	0 4927 7757	000	004	127 211 216	
JTR:	0.871 0.913 0.871	0.625	0, 770 0, 966	0.015 0.031 0.016	0,668 2.560 -13.417	0.565 0.624 0.649 0.894 0.892 0.892	0.583 1.056 -3.841	0.593 0.694 0.915	0.595 0.969 1.203	0.712 0.904 0.866	0-772	0.756 1.283 1.099	0.785 1.482 1.817	0.633 0.761 0.825	0.655 0.676 0.706	
CD/C02:	0.001	0.000	0.000	0.050 0.025 0.025	0,001 0.008 0.008	0,002 0,013 0,014 0,051 0,051 0,051	0.001 0.020 0.032	.000 0.008 0.018	0.000 0.000 0.000	0.020 0.001 0.001	0,002	0.000 0.021 0.038	0.000	0.000.000.000	0.001 0.001 0.001	
2C5/CH4:	0,000	0.000	0.000	0.000 0.000 0.000	0.038 0.040 0.000	0.280 0.018 0.192 0.195 0.153 0.153	0.107 0.100 0.080	0.000 0.118 0.119	0,086 0,000 0.086	0.152 0.022 0.023	0.281	0.033 0.092 0.118	000 °0	0.000 0.000 0.058	0.080 0.145 0.137	
PPM xCSH12: C	000	00	оN	000	000	0444000	000	000	000	000	စာဝ	000	000	000	0.10.4	
PPH CC4H10:	000	οN	04	000	лоо	N 10 4 4 10 10 10	NOO	000	000	NOO	Йo	000	000	000	៰ដដ	
HPH C3H6:	000	00	οN	000	000	0000000	000	000	000	000	00	004	000	000	000	
PPM 18HE1	000	ວກ	0 8	000	ທວວ	33428828	C 4 0	ឲកាស	000	r01	€o	000	000	004	÷₩₩	
PPM C2H41	000	ON	om	000	400	០ 4 ៧ ២ ជួល ដី	000	'007	000	000	υo	ØQN	000	000	ဝဂ္ဂစ	
E2HES	000	0 4	°£	000	4 4 0	37 96 125 125 125 125	ς δ δ δ c v	0 32 32	ობო	ម្លី 4 លី	156 0	ល ជុំ ប្	400	000	210 210 185	
PCT CH4:	0.0005 0.0005 0.0005	0.0015 0.0225	0.0005 0.1100	0, 0005 0, 0005 0, 0005	0.1300 0.0025 0.0010	0.0200 0.5500 0.0370 0.0650 0.1100 0.1100 0.1200	0.0355 0.0070 0.0025	0.0020 0.0170 0.0320	0.0035 0.0015 0.0035	0.0230 0.0150 0.0600	0.0790	0.0060 0.0130 0.0490	0,0030 0.0020 0.0045	0.0035 0.0080 0.0240	0.0100 0.1900 0.1800	
1030 РСТ СО:	0.0020 0.0025 0.0025	0.0000	0.0000	0.0025 0.0025 0.0025	0.0180 0.0040 0.0030	0.0220 0.1200 0.1200 0.2200 0.2800 0.2800 0.1900	0.0110 0.0400 0.0095	0.0010 0.0280 0.0490	0,0000	0.2600 0.0050 0.0035	0.0230	0.0000 0.0600 0.1500	0.0000	0.0000 0.0000 0.0025	0.0095 0.0160 0.0140	
PCT PCT 1	78.60 78.50 78.60	82.20 81.70	78.60 78.30	81.00 80.50 80.80	83.50 78.10 78.00	84.00 82.80 81.40 79.10 79.30 78.50	82.80 78.20 78.00	83.30 78.60 78.50	83.90 78.40 78.10	82.50 78.80 78.90	81.40 78.00	81.40 77.80 77.90	06.92 08.77	82.80 80.30 79.40	82.80 82.40 81.40	
:37 FF PCT FF 02:	18.30 18.50 18.30	8.50 6.60	19,40 15,80	18.00 18.10 18.20	1.60 20.50 20.70	5.40 5.40 10.20 14.90 15.60 15.40	8.20 18.80 20.75	6.40 17.00 17.70	4.60 18.30 19.20	2.90 13.80 14.90	3.80 20.60	5.30 18.40 16.90	14.90 19.20 19.60	6.30 10.50 12.80	5.30 7.40 7.40	
EHOLE = 1 PCT CO2:	2.20	8.30 10.60	1.10 4.50	0.05 0.10 0.05	13.70 0.50 0.40	997.4.0 mm 9997.4.0 mm 999.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.00 2.00 0.30	9.30 2.80 2.80	10.50 2.40 1.80	13.30 6.40 5.20	13.70 0.50	12.30 2.80 4.00	4.80 2.10 1.80	9,90 8,20 6,80	10.90 11.30 10.00	
PCT 80 PCT H2:	0, 0000 0, 0000 0, 0000		0.0000	0.0000 0.0015 0.0015	0.0085 0.0005 0.0010	0.0115 0.0095 0.0230 0.0450 0.0685 0.0685 0.05355	0.0015 0.0000 0.0005	0.0025 0.0015 0.0025		0.0320 0.0030 0.0025	0.0000	0.0115	0,0000		0.0005 0.0015 0.0015	
INH20 PRES:	0.018 -0.005 -0.025	0.038 -0.105	-0.025	0.000 -0.029 0.000	-0.005 -0.620 -0.590	0.026 25.000 -25.000 -25.400 -25.200 -26.200	-0.009 -0.620 -0.610	0.000 -0.240 -0.250	0.00B -0.110 -0.115	0.050 -0.025 -0.018	0.016	0.000 -0.140 -0.120	0.000	0.030 -0.045 -0.050	0.036 -0.015 -0.045	
DS064) DEGC TEMP:	16.7 16.7 16.8	54.2 54.6	17.2 15.7	16.0 14.7 14.4	61.4 57.6 55.9	8.688.60 8.688.600 8.688.60000000000	42.1 33.7 32.5	53.0 48.4 47.4	52.5 51.9	76.0 76.0 77.8	63.0 63.0	46.6 45.9 46.0	51. 4 49. 6 49. 2	57.6 56.9 56.2	53.8 53.6 54.1	
ENTON CJE TIME:	942 1251 1439	934 1435	858 1227	854 1225 1418	849 1224 1416	845 1056 1112 1222 1308 1415 1501	903 1229 1422	931 1244 1434	928 1242 1432	922 1238 1429	906 1230	910 1234 1426	919 1236 1427	925 1241 1431	938 1249 1437	
Mıne Fıre f 8H:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 19	2 S 2 S	ស្តស្ត	***	****	***	ጽጽጽ	9 99	444	44	444	111	ងខ្លួន	និនិនិ	

Figure B-8.-Borehole communications test data, JD5064.

38

P

APPENDIX C.--VENTILATION NETWORK ANALYSIS FOR ABANDONED MINES

Problem

The Bureau's mine fire diagnostics methodology involves, in part, communications studies between boreholes set from the surface into the mine area. One borehole (the suction hole) is exhausted while the gas composition and vacuum developed at the bottom of all the other boreholes are noted; these boreholes are capped from the atmosphere. The measurements of vacuum and gas exhaust flow rate are made where each borehole in the communicating network takes a turn at being the suction hole. With these sets of data and some simplfying assumptions regarding the flow, it is possible to calculate a value for the effective resistance to flow between any two boreholes in the network. This information could be very helpful in locating an abandoned coal mine fire.

Solution

Consider n cased boreholes in an area that communicates to a suction hole, s.

Let ${}_{s}Q_{ij}$ = positive flow from borehole i to borehole j while sucking at suction hole s (i,j,s = 1,2,3,...,n),

- ${}_{s}Q_{xs}$ = flow from unknown regions, x to suction hole s,
- _sQ_{xi} = flow from unknown regions, x to borehole i while sucking at suction hole s.
- $Q_s = total flow exhausted from suction hole s.$

For steady flow developed at each communications test involving a different suction hole s,

$$\sum_{i} {}_{s}Q_{ij} + {}_{s}Q_{xj} = 0, \qquad (C-1)$$

for all $j \neq s$, for all boreholes i including suction hole s.

I.e., the sum of all underground flows into and out of borehole j is zero; noting that it was assumed here that $Q_{ij} = -Q_{ji}$ and $Q_{ij} = 0$. In general, it can be written that

$$Q_{ij} = \left[\frac{P_i - P_j}{R_{ij}}\right]^{1/N}, \quad (C-2)$$

where P_i = static pressure at borehole i,

- P_i = static pressure at borehole j,
- R_{ij} = flow resistance along pathway between borehole i and borehole j,

N = a constant related to type of flow (e.g., N = 1 for Darcy flow; N = 2 for pipe flow).

The resistances R_{xi} and R_{ij} are to be determined so as to evaluate the extent of communication between borehole pairs. Under ideal conditions of no heat or mass addition in the mine, R_{ij} would be a material property and hence equal to R_{ji} .

Now at the suction hole s, there is a net flow out of the mine, Q_{s} .

where
$$Q_s = \sum_{j sQ_{js}} + Q_{xs}$$
, (C-3)

for all boreholes j.

Equation C-1 is summed over all $j \neq s$ to obtain

$$\sum_{\mathbf{j}\neq \mathbf{S}} \sum_{\mathbf{i}} \sum_{\mathbf{S}} \mathbf{Q}_{\mathbf{ij}} + \sum_{\mathbf{j}\neq \mathbf{S}} \mathbf{Q}_{\mathbf{xj}} = 0,$$
$$\sum_{\mathbf{j}\neq \mathbf{S}} \sum_{\mathbf{i}\neq \mathbf{S}} \mathbf{Q}_{\mathbf{ij}} + \sum_{\mathbf{j}\neq \mathbf{S}} \mathbf{Q}_{\mathbf{sj}} + \sum_{\mathbf{j}\neq \mathbf{S}} \mathbf{Q}_{\mathbf{xj}} = 0.$$

However, ${}_{s}Q_{ij} = -{}_{s}Q_{ji}$ and ${}_{s}Q_{ii} = 0$; therefore,

$$\sum_{\mathbf{j}\neq\mathbf{S}} \sum_{\mathbf{i}\neq\mathbf{S}} \mathbf{S} \mathbf{Q}_{\mathbf{ij}} = 0,$$

 $\sum_{j \neq S} \left[{}_{S}Q_{sj} + {}_{S}Q_{xj} \right] = 0.$

or

Since ${}_{s}Q_{ss} = 0$, it can be written that

$$\sum_{j} {}_{s}Q_{sj} + \sum_{j \neq s} {}_{s}Q_{xj} = 0.$$
 (C-4)

From equation C-3,

$$\sum_{j} {}_{s}Q_{js} = -\sum_{j} {}_{s}Q_{sj} = Q_{s} - {}_{s}Q_{xs},$$

which, when substituted into equation C-4, yields

$$-\mathbf{Q}_{\mathbf{s}} + {}_{\mathbf{s}}\mathbf{Q}_{\mathbf{x}\mathbf{s}} + \sum_{\mathbf{j}\neq\mathbf{s}} {}_{\mathbf{s}}\mathbf{Q}_{\mathbf{x}\mathbf{j}} = 0,$$

 $Q_s = \sum_{j \neq s} {}_{s}Q_{xj} + {}_{s}Q_{xs} = \sum_{j} {}_{s}Q_{xj},$

for all boreholes j including suction hole s.

I.e., the exhausted flow from the mine is the sum of all flows from unknown regions into each of the holes communicating with suction hole s. If it can now be assumed that the unknown regions represent all zones that are just in communication with borehole j (i.e., the maximum extent), this would yield $P_x = \text{atmospheric pressure}, P_0$, and

$$Q_{xj} = \left[\frac{P_x - P_j}{R_{xj}}\right]^{1/N} = \left[\frac{P_0 - P}{R_{xj}}\right]^{1/N}.$$

Thus, equation C-5 becomes

$$Q_{s} = \sum_{all j} \left[P_{0} - \frac{sP_{j}}{R_{xj}} \right]^{1/N}. \quad (C-6)$$

The quantity $(P_0 - {}_{s}P_{j})$ is identified as ${}_{s}P_{0j}$, which, in turn, is equal to ${}_{s}P_{j0}$, the negative of the vacuum (itself a negative quantity) measured at borehole j while sucking at suction hole s. In the communications studies involving n boreholes, Q_s and ${}_{s}P_{0j}$ are determined by direct measurement, while the constant N can be evaluated from separate tests where Q_s is determined as a function of ${}_{s}P_{j0}$. Alternatively, a value for N can be assumed (e.g., N = 1 for complete Darcy flow). Underground heat addition with its effect of temperature throttling can be accounted for by correcting the measured vacuum back to ambient temperature conditions, i.e.,

$$_{s}P_{j0} = (_{s}P_{j0})_{measured} \cdot (_{s}T_{0}/_{s}T_{j}),$$

where

 $_{s}T_{0}$ = ambient temperature,

and

 ${}_{s}T_{j}$ = downhole temperature at borehole j while sucking at suction hole s. Equation C-6 is a set of n equations containing the n unknown resistances, which can be solved for simultaneously. The resultant values for each of the R_{xj} 's, should be material constants that describe the underground ventilation system. It is also noted that equation C-1, along with the same data from the communications studies, likewise forms a set of equations, i.e.,

$$\sum_{i} \frac{s^{P}_{ij}}{R_{ij}} \sum_{i=1}^{1/N} = -\frac{s^{P}_{0j}}{R_{xj}}, \qquad (C-7)$$

for all $j \neq s$.

(C-5)

Since $_{P_{0j}}$, N, R_{xj} , and $_{P_{ij}}$ are known, and since $P_{ij} = 0$, each value of $j \neq s$ leads to a set of (n - 1) equations with (n - 1) unknowns (the R_{ij} 's), which can be solved simultaneously to yield values for the effective R_{ij} . E.g., in case of Darcy flow, the equations can be written in the following form:

Taking
$$j = 1$$
; i,s = 2,3,4,...,n,

Taking j = 2; i,s = 1,3,4,...,n

Taking j = 3, i,s = 1,2,4,....n, a similar set of n - 1 equations is obtained, and so on, for each value of j.

An interesting aspect of the solutions for the effective resistance between borehole pairs is that values are calculated explicitly for R_{ij} and R_{ji} . Under the assumptions of an ideal ventilation network (i.e., no gaseous mass additions from burning coal), the R_{ij} 's would simply be material properties whose calculated values should not change when flow is reversed between borehole i and borehole j. On the other hand, if the solutions to the ideal network model give rise to values of R_{ij} and R_{ji} , which are not equal, it is likely that heat and/or gaseous mass is being added to the network in a nonuniformly distributed manner (e.g., between one or more borehole pairs). The noncommutative behavior of the effective resistances at Renton can be seen from figures C-1 through C-3, which list the calculated values based upon field measurements

1/]	43	42	38	39	44	58	37
43	0,0088	0.49	1,06	0.75	1.55	0.64	2.33
42	1,10	0,0127	1,61	1.76	5.84	6.51	5.55
38	1.18	0.91	0,0046	0.57	4,19	2.53	0.47
39	0,70	0.89	0.35	0,0084	2,21	1.10	0.86
44	1,14	3,70	2,92	3.02	0.0088	0.87	9,43
58	0.37	1,20	0,85	0.69	0,64	0,0071	2.72
37	1,53	1.91	0,24	0,69	5,29	3.52	0.0118

Figure C-1.—Danny property site R_{ij} and R_{ji} values, inches of water per standard cubic foot, JD4134 to JD5064. R_{xi} values are listed in the R_{ii} boxes.

171	56	53	7	45	47	50	51
56	0.0074	0,040	-8,33	40,00	7.35	-4.02	0,337
53	0.028	0.0003	0,028	0.061	0.063	3.61	0.004
7	1.64	0.020	0,0052	0,782	0,729	-9.43	0.111
45	10, 1	0,034	-5,18	0,0025	0.108	-8.70	0.133
47	4.27	0.026	-2.44	0.098	0,0014	-2.34	0.118
50	27.8	0,082	-7.81	1.079	0,998	0.0092	0,429
51	0,430	0.003	0,432	0,119	0,160	14.9	0,0013

Figure C-2.—Plum Street site R_{ij} and R_{ji} values, inches of water per standard cubic foot, JD4284 to JD4307. R_{xi} values are listed in the R_{ii} boxes.

1/]	12	27	29	32	34
12	-0.0836	0.08	13.27	2,21	451
27	-12.06	0.0014	1.32	19.3	24.3
29	-93.65	-1.08	0.0097	31.1	1 19
32	90,96	-1.77	1961	0.0183	139
34	-24870	-2.62	-40,18	139	0.0492

Figure C-3.---Miller Farm site R_{ij} and R_{ji} values, inches of water per standard cubic foot, JD4258 to JD4269. R_{xi} values are listed in the R_{ii} boxes.

of flow and vacuum for the three separate fire zones: Danny (seven boreholes), Plum Street (seven boreholes) and Miller Farm (five boreholes).¹ The noncommutative behavior of some of the R_{ij} pairs (factor differences ranging up to more than 100), along with calculated negative values for many of the R_{ij} 's, do indeed strongly suggest that the areas encompassed by each of the borehole networks do contain regions having nonideal behavior, presumably the underground fire.

Assuming ad hoc that ideal conditions (i.e., no fire) are still reflected by those borehole pairs whose resistances do commutate (at least to some "reasonable" factor to account for the many uncertainties that exist in the measurement and treatment of data), then those borehole pairs would be communicating through the nonfire regions of the mine. This is approximately the case of figures C-4 and C-5,

¹It is noteworthy that the positive values of R_{xj} (0.0003 to 0.0492 in H₂0/scfm with an average of 0.0093 in H₂O/scfm) are somewhat higher, but still in keeping with the value of Darcy flow resistance (0.00098±0.00011 in H₂O/scfm) determined for the Calamity Hollow mine fire site (12, p. 21).

Figure C-4.—Map of cold boundary from network ventilation analysis, Plum Street area.

Figure C-5.---Map of cold boundary from network ventilation analysis, Danny property area.

where the "cold" borehole pairs (taken as those for which the resistances are positive and commutate within a factor of 1.5) are connected by dashed straight lines. In the case of the Plum Street and Danny sites, the dashed lines suggest outer cold boundaries that are in rough agreement with those surmised from analysis of the fire signatures, at least for the specific boreholes and Julian dates involved. In the case of the Miller Farm site, no commutating resistances can be observed (see figure C-3). This suggests that the cold boundary is exterior to the area covered by the five boreholes involved, an interpretation which is again approximately consistent with the fire signature results for the specific boreholes and dates involved.

The possibility of accurately defining fire zones through this type of network analysis is intriguing because it could save the need for sampling and analysis of the composition of the mine atmosphere, the current basis of the Bureau's mine fire diagnostics. However, correlating experimental ventilation network data for a mine fire (i.e., a nonideal network) by utilizing a theory based on an ideal network is highly questionable. The assumptions made above regarding the significance of the commutative (or noncommutative) character of the calculated R_{ij} values would have to be tested against a more rigorous theoretical analysis of the actual network conditions.